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Abstract
D1.3 is related with the activities performed within T1.3. This deliverable first reports the benefits from

linking NEXTAIR with the EuroHPC programs REGALE and NextSim (section 1). The benefits from using

multi-level approaches in MDO are addressed in section 2, while those from using mesh adaptation in

laminar wing cases and adjoint methods to compute Pareto fronts are the subjects of sections 3 and 4,

respectively. Finally, section 5 reports techniques for cost reduction when the (continuous or discrete)

unsteady adjoint is used in an optimization loop.

Keywords

Mesh adaptation, Multi-objective optimization, Gradient-based optimization, Multi-level parameterisa-

tion, MDO, Unsteady adjoint, Compression, Uncertainty Quantification

Ref. Ares(2024)1562791 - 29/02/2024



NEXTAIR D1.3

GA No 101056732 DENs to Speed-up MDOs

Funded by the European Union. Views and opinions expressed are however those of the author(s)

only and do not necessarily reflect those of the European Union. Neither the European Union nor the

granting authority can be held responsible for them.

2



NEXTAIR D1.3

GA No 101056732 DENs to Speed-up MDOs

Information Table

PROJECT INFORMATION

PROJECT ID 101056732

PROJECT FULL TITLE NEXTAIR - multi-disciplinary digital - enablers for NEXT-

generation AIRcraft design and operations

PROJECT ACRONYM NEXTAIR

START DATE OF THE PROJECT 01/09/2022

DURATION 36 months

CALL IDENTIFIER HORIZON-CL5-2021-D5-01

PROJECT WEBSITE https://www.nextair-project.eu/

DELIVERABLE INFORMATION

DELIVERABLE No AND TITLE D1.3 - DENs to Speed-up MDOs

TYPE OF DELIVERABLE R

DISSEMINATION LEVEL PU

BENEFICIARY NUMBER AND 7 - NTUA

NAME

AUTHORS

CONTRIBUTORS Please see first page

WORK PACKAGE No 1

WORK PACKAGE LEADER Kyriakos Giannakoglou (NTUA)

COORDINATOR VALIDATION

DATE

29/02/2024

ACRONYM MEANING

AI Airbus

DAv Dassault Aviation

DLR Deutsches Zentrum Für Luft- und Raumfahrt

FOSS Flow & Optimization, Software & Services

INRIA Institut National de Recherche en Informatique ey Automa-

tique

IRT IRT Saint Exupery

NTUA National Technical University of Athens

ONERA Office National D’etudes et de Recherches Aerospatiales

OPT Optimad Engineering SrL

RR Rolls-Royce PLC

UNICA Universita Degli Studi di Cagliari

USFD The University of Sheffield

1



NEXTAIR D1.3

GA No 101056732 DENs to Speed-up MDOs

1 Links with EuroHPC Activities

1.1 Link with the REGALE EuroHPC project

NTUA is, simultaneously, involved in the REGALE EuroHPC project (GA No. 956560) in which its main

responsibility is to perform shape optimization studies in hydraulic turbomachinery in the framework of

Pilot 1 of the project; five pilots, acting as representatives of the next generation of HPC applications

are considered in REGALE. The NTUA in-house GPU-accelerated PUMA code is used for the simulations

and optimization runs. This is the same code as the one used in NEXTAIR, however, due to the

applications of REGALE (hydraulic turbomachines), its incompressible fluid variant is used. Nevertheless,

since both the incompressible and compressible fluid flow solvers of PUMA are parts of the same

overall software, the compressible flow solver used in NEXTAIR has equally profited from the work done

in REGALE. Excluding code customizations dealing with the specific optimization problem studied in

REGALE, the following tasks of NTUA are directly linked with the NEXTAIR project: (1) making/adapting

PUMA code so as to be ready for exascale deployment and (2) implement exascale-ready workflows

for uncertainty quantification (UQ) using PUMA.

The former includes a restructuring of the parallel deployment and reduction in memory require-

ments of PUMA so as to cope with computational grids with hundreds of millions of nodes in multi-GPU

platforms. Scalability tests performed thus far (some scenarios are still on-going) for computational grids

up to 80 millions of nodes, on a computational node with 8 NVIDIA V100 GPUs and/or two nodes with

6 NVIDIA A100 GPUs are promising. For a computational grid of about 12 million nodes a near linear

speed up is obtained until the partition size becomes small, i.e. on more than 6 GPUs. This enhanced

version of PUMA is used in NEXTAIR for the multi-disciplinary studies of WP3 and WP4.

Regarding UQ, PUMA has been coupled with the Melissa workflow manager, [76]. Melissa,

orchestrates the simultaneous execution of the simulations required in UQ (herein using PUMA)

interacting with commonly used batch schedulers (e.g. SLURM or OAR) of supercomputing systems. It

also uses iterative algorithms for computing statistical quantities (mean, variance, Sobol indices, etc.)

without storing any data to disk.
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1.2 Link with the NextSim EuroHPC project

AIRBUS, DLR and ONERA develop the next generation aerodynamic simulation code CODA compliant

with extreme-scale parallel computing platforms. Ongoing NEXTAIR activities are contributing to

validate and enhance the maturity of this CFD code with a focus on CSM-CFD coupled computations

and adjoint methods.

As a first step towards coupled CSM-CFD simulation, we considered the rigid DLR SMR-HARW F25

configuration to evaluate CODA’s capability for handling extensive nonlinear steady flow analyses.

Two unstructured, hybrid meshes, called thereafter M1 and M2, supplied by DLR, were used at ONERA

for this analysis, each of these meshes consisting of 4.0 and 9.9 million grid points, respectively.

Physical conditions are typical of a transonic regime and the Mach number, reference pressure

and temperature are set to M∞ = 0.78, P∞ = 22729 Pa, T∞ = 216.8268 K , respectively. The

Negative Spalart-Allmaras RANS model is used, with a turbulent viscosity ratio of 0.77.

We aim at computing the steady flow on this configuration, using the time-marching linearized

implicit Euler method implemented in CODA [21]. In practice, this is a penalized Newton method, in

which a virtual time stepping is added. The relative importance of the time step is monitored with the

residual using a SER ramping method, and the CFL reaches values up to 60000 in the case considered

below. Linear systems are solved using a restarted GMRES strategy with a Krylov subspace of 60

vectors, together with a classical Jacobi preconditioner. The nonlinear solver progresses through three

stages, gradually enhancing the flux reconstruction scheme and the accuracy of the Jacobian matrix,

as outlined in Table 1.

Stage # 1 2 3

Flux limiter Full Limiting Spline quintic (K = 10) idem

Extended stencil no yes idem

Exact jacobian (AD) no no yes

Relative residual tolerance 1.0× 10−3 1.0× 10−5 1.0× 10−8

Table 1: Parameters used in the different CODA solver stages.

Figure 1: Relative Residuals L2 norm across iterations, for an angle of attack α = 2◦ at M = 0.78. Different

stages are separated by the vertical lines.

A typical convergence history of the density residual is shown in Figure 1, in which the three different
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phases are highlighted. During the first stage the residual decreases rapidly, as the flow, initiated as a

free-stream starts approaches a physical solution. This provides a better starting solution for the second

and third phases where more accurate (but less robust) schemes are activated along with the exact

Jacobian matrix evaluation (third stage).

Figure 2: Top view of the DLR F25 configuration showing the pressure coefficient distribution at angle of

attack α = 2◦.

In Fig. 2 the pressure coefficient distribution over the aircraft is plotted, showing notably the well

established shock spanning on the entire wing. Computations were carried on a range of angles of

attack in [−2.0 : 3.0], and aerodynamic coefficients are shown in Fig. 3. Between meshes M1 and

M2, only the third significant digit of the drag changes in all cases, and the solution can be considered

to be converged in mesh size. However, for large angles of attack the flow detaches and the results

on the lift varies on the second significant digit. The results are further compared with those obtained

with the elsA solver [5], albeit with a different mesh (multi-block structured, comprising 12M grid points),

and with different flux limiter (van Albada), convection scheme (centered Jameson while Roe is used

in CODA) and linear solver (LU-SSOR).

Overall, this work focused on the resolution of the flow state at typical flight conditions around a

rigid configuration, and is a necessary first step towards aeroelastic simulations.
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Figure 3: Lift coefficient v.s. angle of attack (right) and Lift v.s. Drag coefficient (left) for the two different

meshes are shown with crosses, while the open circle denotes the results obtained using solver elsA [5] on a

12M points structured grid.

The adjoint capabilities of CODA are still under development at DLR: their current status does not

allow a complete assessment of the CFD shape gradient yet. A first comparison is presented here by
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ONERA for the adjoint solution with respect to the results computed by means of the legacy code

elsA (ONERA-Safran property). The test case is represented by the Euler flow past a NACA0012 airfoil

at M = 0.5 and zero incidence. In CODA, the (primal) flow field is solved by using a Discontinuous

Galerkin (second order) spatial discretization. Then the GMRES algorithm is employed to solve the

adjoint problem associated with the drag coefficient. Figure 4 illustrates the comparison of the

components of the adjoint wall field as computed by CODA and elsA. Furthermore, for this particular

test case, the adjoint solution has an analytical expression [40] and the CODA results also compare

favorably to the analytic solution. Testing and validation will continue according to the newly available

adjoint capabilities in CODA.

Figure 4: Comparison of the adjoint wall fields computed with CODA and elsA for the NACA0012 Euler test

case at M = 0.5 and zero incidence.
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2 Multi-Level Parameterisation & Multi-Fidelity Approaches in MDO

2.1 Multi-fidelity ML model to speed up topology optimisation of Heat Exchangers

2.1.1 Forewords

The goal of the activities performed by OPT in ST1.3.2 is the definition of a Machine Learning (ML) model

to speed up the Multi-Disciplinary Optimization (MDO) of Additive Manufactured (AM) Micro-Channel

Heat Exchanger (MCHE). Since, multiscale optimization of MCHE is the topic of ST6.3.2, the focus of

this deliverable is the description of the ML model. A detailed description of the optimization method

can be found in deliverable D6.3 and the accompanying report. ST6.3.2 focuses on the definition

of an efficient multiscale approach for the numerical simulation and optimization of MCHE based

on Triple Periodic Minimal Surfaces (TPMS) lattices. The goal of the optimization is to determine the

topology of microchannel (i.e. lattice parameters) in order to maximize the performances of the heat

exchanger. Due to the inherent multiscale nature of the problem, Conjugate Heat Transfer (CHT)

simulations of MCHE require high-resolution computational models to well-resolve fluid dynamics at the

scale of microchannels. Depending on the lattice geometry, computational meshes typically range

from several dozens to a few hundreds of millions of cells to accurately resolve phenomena at the

smallest time-space scales. While the CFD analysis of a single configuration is certainly possible with

modern HPC resources, in a topology optimization loop, hundreds (if not thousands) of configurations

must be spanned during the exploration of the parameter space, thus making topology optimization

challenging to attain in a computational time compatible with industrial turnover times.

In order to cope with those challenges, the simulation strategy is based on homogenization

theory. Instead of simulating the flow field at all time-space scale, the lattice matrix is treated as a

meta-material and is simulated only at the macroscale in terms of suitable field-averaged quantities.

The equivalent porous medium is characterized (locally) by a permeability tensor and heat transfer

coefficients, which are assumed to be non-linear functions of the local lattice geometry and the local

flow conditions. This leads to a fully non-linear Darcy-Forchheimer-type model, which requires proper

closure relationships in order to be solvable. Activities carried out in ST1.3.2 focus on developing a ML

technique to infer such (non-linear) closure relationships in order to link macroscopic properties of the

lattice matrix to the behaviour of the flow field at the microscopic scale, thus realizing the two-way

coupling between macro and micro(meso)-scales.

2.1.2 Multi-fidelity strategy to MDOs

Ultimately, the goal of the Reduced Order Model (ROM) developed in ST1.3.2 is to minimize the

computational effort required by topology optimization of MCHE. The strategy developed in this task is

built around on a Non-Intrusive ROM (NI-ROM) based on the Proper Orthogonal Decomposition (POD)

method. In this approach, the full order model (i.e., high fidelity CFD simulation of the whole heat

exchanger) is replaced by the homogenized model. Closure relationships required by macroscopic

equations are obtained through fast predictions of the flow field at the scale of a single lattice cell.

Such predictions are computed by the multi-fidelity surrogate starting from the (local) lattice geometry

and the (local) flow conditions computed at the macroscale. From flow field predictions, relevant

quantities, such as permeability tensor, Forchheimer’s correction and heat transfer coefficient are

extracted and fed back to the macroscale simulation. The focus of ST1.3.2 is the exploitation of

multi-fidelity methods to reduce the number of CFD simulations required to train the ROM. This choice is

motivated by the fact that ROMs for CFD applications operate in the so-called “data-sparsity” regime,

i.e. training data are scarce due to the significant computational cost required to obtain high-fidelity

CFD simulations. On the contrary, ML approaches allow to exploit heterogeneous information sources,

and consequently reduce the cost associated to dataset generation.
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2.1.3 Multi-fidelity POD-ROM

In order to design the ROM, a dimensionality reduction was required. POD (specifically, “the method of

snapshots”) was used to build the NI ROMs. NI ROMs are based on machine learning algorithms used

to infer the correlation between low and high fidelity data. The most common choices are Radial Basis

Function (RBF) interpolation, Gaussian Process (GP) regression, or Neural Networks (NN). By combining

these regression models with the encoded representation obtained by POD, a ROM was trained to

predict the fluid dynamic fields in a lattice cell given the cell geometry and operating conditions, that

is the average pressure gradient across the cell as computed at the macroscopic scale.

The proposed POD multi-fidelity ROM was designed to address sparse High Fidelity (HF) problems,

characterized by large geometrical variations. In our application, geometry variations of lattice cells are

generated during the optimization loop. A Non-linear Auto-Regressive multi-fidelity Gaussian Process

(NARGP) (Perdikaris et al., 2017) was adopted to infer the non-linear correlation between high fidelity

and low fidelity POD coefficients. In other words, a multi-fidelity model was designed to improve the

projection error obtained by a low-fidelity POD by leveraging few sparse high fidelity data. As opposed

to other multi-fidelity models, NARGP is characterized by an enhanced level of flexibility and is also

non-intrusive. Moreover, NARGP has a recursive structure which allows to incorporate an arbitrary

number of fidelity levels. This is one of the generalization envisioned for the remaining part of activities

for this sub task. At the present moment, only two fidelity levels were considered, both obtained through

CFD simulations. HF data were obtained by running simulations on single lattice cells with variable

geometry using a fine computational grid of approximately 500k computational cells. Low Fidelity (LF)

data were obtained using a coarser computational mesh of 60k cells (more details on the training

dataset are given in the next section). LF data were used to quickly populate the training dataset at

a relatively small cost, albeit with data points characterized by a lower accuracy. Since simulations

on the coarser grid tend to under-resolve heat transfer phenomena (especially for Reynolds number

approaching the transitional regime), correlation between HF and LF POD coefficients is assumed to

be non-linear. Hence, the use of NARGP model. Lastly, LF and HF training datasets are nested. This

proved to be slightly beneficial during the training, although not mandatory.

2.1.4 Training dataset

The training dataset of microscale simulations was generated with two nested fidelity levels. Each

fidelity level corresponds to simulations performed at a different mesh resolution. HF simulations were

performed on a computational grid of roughly 500k computational cells. This mesh size was determined

during a mesh dependency study as the best compromise between accuracy and computational

cost. LF simulations were performed on a coarser mesh of 60k cells. Figure 5 shows and example of

HF and LF simulations performed for two different lattice cell geometries. From the mesh dependency

study, flow fields computed on the LF computational grid show to under-resolve certain flow features,

especially in the range of parameters corresponding to transitional Reynolds number at the microscale.

This eventually leads to slightly poorer prediction accuracy of the multi-fidelity model in such a range

(see next sections).

Each simulation in the database was performed on an individual lattice cell with varying geometry

and operating conditions. Both wall thickness and cell frequency were varied to generate the training

data points. The main parameters used to generate dataset are summarized in the Table 2.

For each simulated geometry, two type of simulations were performed:

• Cold runs: used to characterize permeability tensor and Forchheimer’s correction as a function

of the pressure gradient across the lattice cell and its geometry.

• Hot runs: used to characterize the heat transfer coefficient as a function of the pressure gradient

across the lattice cell and its geometry.
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Figure 5: High and low fidelity simulations for two different lattice cells included in the training dataset.

Property range units

Pressure gradient across unit cell 0− 200 Pa

Gyroid thickness 0.0003− 8.0 mm

Gyroid x, y, z-period 5− 20 mm

Coolant dynamic viscosity 0.00165 Pa s

Coolant density 1068 kg/m3

Table 2: Geometrical and physical parameters used to create the dataset of micro-scale simulations.

Both hot and cold runs were performed using the buoyantPimpleFoam solver from the OpenFOAM

suite (https://www.openfoam.com/). In cold runs, a pressure gradient was assigned in turn along each

lattice direction to characterize the corresponding row of the permeability tensor for non-isotropic cell

(i.e. lattice cell characterized by different frequency along each coordinate axis). Periodic Boundary

Conditions (BCs) on pressure were enforced along the other directions. Periodic BCs on velocity

were used in all directions. This setup corresponds to OpenFOAM CyclicAMI BCs and is commonly

used to emulate fully developed flows in the bulk region of a porous medium. Permeability tensor

and Forchheimer’s coefficient are reconstructed using the Darcy-Forchheimer’s law, starting from the

applied pressure gradient and a reference velocity computed by the simulation. For small Reynolds
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numbers, the reference velocity was computed as the average inlet fluid velocity at the steady state.

Simulation performed at transitional Reynolds numbers (i.e. starting from Re > 700) does not exhibit a

steady solution. In such cases the reference velocity was computed as the inlet velocity averaged

over a time-window of 1 s at statistical convergence (i.e. starting from a simulated time of 4 s.).

Figure 6: Example of time history of the average inlet velocity (top) and inlet pressure (bottom) for a

isotropic gyroid cell with 10 mm period and 1mm wall thickness at various pressure gradient across the unit

cell. Starting from Re = 700 (approx.), flow field does not exhibit a steady state.

Hot runs were performed by assigning a fixed temperature to the solid and a fixed inlet temperature

to the fluid. This choice is motivated by the fact that the viscosity of the coolant does not exhibit strong

variations with temperature in the range of operating conditions simulated during the optimization

loop. Thus, the heat transfer coefficient can be considered approximately constant with respect

to temperature variations and the thermal and dynamic solvers can be decoupled. In order to

characterize the heat transfer coefficient, hot runs were started from the converged solution of the

cold run. During the hot run, the heat transfer coefficient was estimated at each time step from the

wall heat flux and the instantaneous temperature difference between solid and coolant. Instantaneous

values of the heat transfer coefficient were averaged over the time history purged from the initial

numerical transient. The dataset is composed of 105 high fidelity simulations and 294 LF simulations

(gray circles and blue circles in figure 7) obtained by a Latin Hypercube Sampling (LHS) strategy. Each

datapoint corresponds to a different cell frequency, wall thickness and pressure gradient imposed

across the lattice cell. Among all simulations 263 LF and 97 HF simulations exhibited a steady state.

Figure 6, shows a projection of the dataset of steady simulations onto the plane of the parameter space

spanned by pressure gradient and wall thickness. Simulations corresponding to wider channels (lower

wall thickness) performed at higher pressure drop exhibited a unsteady behavior due the Reynolds

number approaching the transitional regime. Data points in this region were generated using a Poisson

Disk sampling strategy, that is the minimum Euclidean distance between randomly sampled point is

constrained above a certain threshold to guarantee that datapoints are distributed as uniformly as

possible. In both regions, HF and LF data points are nested. In our numerical experiments, this resulted

in better training performances of the NARGP model.
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Figure 7: Distribution of data points in the region of the parameter space corresponding to steady flow field

at the micro-channel scale. Blue dots represent high-fidelity points, i.e. simulations performed using a fine

computational grid. Gray markers indicate low-fidelity samples. Red crosses indicate data points used for

validation.

2.1.5 Solution Mapping

One of the main drawbacks of the POD method is that all the snapshots are required to have the

same cardinality in order to form the snapshot matrix, that is all the simulations on the same fidelity level

must be performed on the same computational mesh. In practice, however, it was impossible to use

the exact same computational mesh across the whole training dataset due to the varying geometry of

lattice cells. To circumvent this problem, a strategy was devised to map numerical solutions obtained on

different computational meshes onto a common “template” grid. The idea is similar (in philosophy) to

mesh registration. A suitable geometrical mapping is defined such that HF (LF) computational grids are

mapped to a common HF (LF) “template” mesh. Next, flow fields are interpolated onto the template

grid and then used to form the snapshots matrix. This procedure, of course, introduces an additional

source of error due to data interpolation resulting in a prediction accuracy limited by the interpolation

error. However, given the size of the computational meshes used in the experiments, it was found that

such an interpolation error is usually lower than the projection error. In this work, the focus was on lattice

cells belonging to the family of TPMS. Given that, the geometrical mapping was required to handle

only shape variations in the same class of lattice cell topologies. Variable frequency is handled by

“stretching“ the template grid differently along each coordinate axis. Thickness variations are handled

by parametrizing the mapping with respect to the distance from the medial axis of channels (see figure

8, for a schematic depiction).

2.1.6 Results

For the HF POD, a variable number of HF snapshots ranging from 5 to 75 were used to perform a

parametric study in order to define the energy level at which the POD basis is truncated. The energy

chosen to truncate the POD basis was set to ε = 0.999999. this value guarantees that the higher

frequency modes corresponding to (almost) pure noise are removed, while retaining lower frequency

modes which still carry physical information. This is shown in figure 9, where projection error for both

validation and training datapoints are plotted against the energy threshold used to truncate the POD
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Figure 8: Registration of lattice cells with variable wall thickness. The target geometry (left panel) is mapped

onto the template (middle panel). The mapping is performed by advecting the zero-contour of the level

set function along the level set gradient. These trajectories (right panel) converge onto the medial axis of

the geometry. By varying the integration time along these trajectories it is possible to generate cells with

variable wall thickness.

basis for a variable number of HF training snapshots.

For the energy threshold defined above, the energy of each POD mode is shown in figure 10,

alongside the error histogram computed over the training and validation datasets. Figure 9 and 10,

show that projection error on the training dataset is in the same order of machine precision. This

corresponds to a projection error on the validation dataset between 5 − 10%, which is also the

prediction accuracy obtained on permeability and Forchheimer coefficients (see later).

Since the multi-fidelity approach is sensible to the relationship between the LF and HF information,

only the coefficients associated to the first modes are regressed with the NARGP model. This stems

from the fact that LF snapshots struggle to capture high frequency features due to the coarser

computational grid. Consequently, the projection of LF snapshots on the last part of the POD base will

not necessarily improve the prediction accuracy. This is particularly evident for unsteady simulations,

i.e. simulations performed on gyroid cells with lower wall thickness (larger channels) and higher pressure

drops imposed across the lattice cell. Figure 11 shows the correlation plot between HF modes and

the corresponding LF modes for a gyroid cell in the unsteady regime. While the first two modes are

perfectly correlated (r = 0.99 and 1 respectively), starting from mode 2, correlation between HF and

LF modes is almost non-existent (r = 0.11). This effect is likely due to the fact that some flow features

(such as detaching vortices) are under-resolved on the coarser grid. In the HF POD such features are

still represented by modes with lower frequency (larger energy). On the contrary, in LF POD modes

this information is represented only partially due to under-resolution, leading to the low value of the

correlation coefficient.

This is also confirmed by the value of permeability and Forchheimer’s coefficient computed from HF

and LF simulations (shown in figure 12). The discrepancy observed for lower value of the wall thickness

(associated to unsteady simulations) is noticeable and lead to a poor correlation between HF and LF

data.

From figure 12, it should be noted that Forchherimer’s coefficients are also polluted by noise in the

regime of unsteady simulations. This is likely the consequence of the statistical accumulation method

described in the sect. 2.1.5, and could explain the better prediction performances on the Forchheimer’s

coefficient obtained with a single fidelity GP as opposed to the multi-fidelity approach. For the reasons

described above, only the coefficients corresponding to the first 4 modes have been regressed with

the multi-fidelity model, while less energetic modes have been approximated with single fidelity GP

regression models. Since increasing the number of HF modes does not bring any significant benefit,

also the number of high-fidelity snapshots was reduced to four. A summary of hyperparameters used
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Figure 9: Projection error for validation and training data plotted as a function of the energy threshold used

to truncate the POD basis using a variable number of HF training snapshots.

in the training can be found in Table 3. The single-fidelity GP column refers to the options for the single

fidelity model used to fit the POD coefficients relative to less energetic modes. The same options have

been used also for the single fidelity GP regression model used for comparison.

Results of the predicted coefficients are shown in figure 13 and 14. All the tested models show a

good prediction accuracy for both permeability and Forchheimer’s coefficient in range of geometric

parameters and operating conditions corresponding to steady state flow at the microscopic scale.

On the other hand, a reduced prediction accuracy in the range corresponding to unsteady flow is

observed. This effect is due to the poor correlation exhibited by HF and LF snapshots due to flow

features being under-resolved in LF simulations. For the Forchheimer’s coefficient, the single fidelity (GP)

model (used here for comparison) shows slightly better prediction performances than the multi-fidelity
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Figure 10: Validation and training error plotted against the energy threshold used to truncate the HF basis

for different number of HF snapshots.

Figure 11: Correlation plot for the between low and high fidelity POD for the first three modes computed

for an unsteady flow field. While the first two modes are perfectly correlated, starting from mode #2,

the correlation is almost non-existent, suggesting that some flow feature observed in HF simulations are

under-resolved in the LF simulations.

Figure 12: Permeability and Forchheimer’s coefficient computed from HF (blue) and LF (orange) simulations

(left panel) and their correlation plot (right panel). In the region characterized by lower wall thickness (larger

channel) the discrepancy between HF and LF data is noticeable leading to a poor (linear) correlation.

model, due to the presence of noise (observed in both HF and LF simulations).
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Option LF model HF model Single fidelity GP

Optimization algorithm BFGS(*) BFGS BFGS

Max. iterations 2500 2500 2500

Optimizations restarts (**) 10 8 10

Kernel Matern 3/2 Matern 3/2 Matern 3/2

Gaussian noise variance 0.2 (normalized) 0.2 (normalized) 0.2 (normalized)

Table 3: Options used for the main hyperparameters in the training of the multi-fidelity model. (*) Broy-

den–Fletcher–Goldfarb–Shanno algorithm. (**) Random restarts of the optimization to increase robustness

with respect to the initial guess.

Figure 13: Predictions of permeability coefficient obtained with a multi-fidelity model and compared with a

single fidelity GP model.

2.1.7 Conclusions

The purpose of the multi-fidelity POD ROM presented in this work was to improve accuracy of single-

fidelity ROMs, while reducing the amount of HF information needed to train the model. In light of the

results showed in section 2.1.7, several conclusions can be drawn.

First, the addition of LF snapshots improves the prediction accuracy of the model in the steady

state regime. This is easily noticeable in Figure 9, where the multi-fidelity model produces prediction on

permeability coefficient which are >10% more accurate than the single fidelity ROM.

Second, the presence of noise in the input data has a detrimental effect on the prediction of

the Forchheimer coefficient. This is evident in figure 14, where the multi-fidelity model tries to mimic

the high frequency noise from HF data, as opposed to a the single fidelity GP. To further improve the

prediction accuracy for the Forchheimer’s coefficient, we plan to investigate the effect of different

statistical post-processing of both HF and LF simulation data. Additionally, models based on more than

two fidelity levels will be investigated in order to incorporate data with an intermediate fidelity which
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Figure 14: Predictions of Forchheimer’s coefficient obtained with a multi-fidelity model and compared with

a single fidelity GP model.

would still represent a significant speed-up with respect to relying solely on HF simulations.

Given all these considerations, the proposed multi-fidelity POD ROM was able to augment the

capabilities of the analogue single-fidelity NI-ROM in the steady regime, both in terms of representability

and prediction accuracy. The advantages in terms of computational costs are inevitably related to

the choice of the LF model. Nevertheless, this experiment demonstrates that the HF approximation of

a ROM could benefit from otherwise poor LF information.
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2.2 Multi-level Parameterisation to Speed-up MDO

We investigate the creation of a preconditioner from a Hessian matrix approximation of the objective

function to speedup the optimization. This approximation is very expensive to compute when applied

to the full design space. Therefore, the proposed approach aims at building this approximation on a

well-chosen subspace: the most and least important gradients of the objective. Then, a sampling of the

objective function gradient is performed on this subspace. Finally, the Hessian matrix approximation is

obtained. The approach is illustrated in figure 15.

Figure 15: Construction of the Hessian matrix approximation in a reduced dimension space

Then, the preconditioner is obtained from the formulaP = H−(1/2). This preconditioner is passed to

the preconditioned variant of the gradient-based L-BFGS-B algorithm [80] developed at IRT. The overall

process has been tested on mathematical formulae and does not currently provide any speedup,

the reasons for this are being investigated. The subspace selection criteria may not be adequate.

The active subspace method [41] is also being investigated for this purpose. Once the speedup is

demonstrated, the process will be applied on the wing optimization of the DLR-F25 configuration.
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2.3 Required Simulation Capabilities for the UHBR fan (TC3) [RR, UNICA, USFD]

In this task, ST1.3.2 (WP1) - Multi-Level Parameterisation & Multi-Fidelity Approaches in MDO [M1-M18],

USFD, UNICA and RR have worked on the development of the required simulation capabilities for

the UHBR fan multi-objective optimization (MOO) that will take place in ST4.3.1 (WP4) - Multi-fidelity

aerodynamic optimization of the UHBR fan blade [M9-M27].

As outlined in the NEXTAIR project proposal (HORIZON-CL5-2021-D5-01-06, PartB document), the

present task ST1.3.2 is meant to pave the way for the posterior task ST4.3.1; which states: ‘‘UNICA,

supported by USFD for the integration of the structural requirements and RR for the CFD models at

different levels of fidelity, will perform parametric and MOO studies, making use of multiple levels of

fidelity".

At the same time, the parametric MOO studies in ST4.3.1 are preceded by a problem setup and

validation phase outlined in task ST4.2.1 (WP4) - optimization problem setup and validation, UHBR TCs

[M03-M18]:

TC3 - Aerodynamic and structural simulation capabilities for UHBR composite fan blade:

• RR and UNICA will focus on the aerodynamic simulations:

– Lo-Fi simulations on the isolated fan blade using RANS solvers

– Hi-Fi simulations (U-RANS) on the installed configuration to take into account component

interactions, such as non-axisymmetric OGV-Pylon and non-axisymmetric intake. If required,

the DDES and zonal LES HYDRA capabilities will be used.

• USFD will focus on structural solvers and their link to aerodynamic simulations.

So, the present report should demonstrate the acquisition of the necessary capabilities to fulfil the

requirements for ST4.3.1 (WP4) described above. These requirements have been met (for (WP4), and

also have been exceeded, since also capabilities for WP5 and WP6 have been developed, which are

also presented here. It seems adequate to present these additional developed capabilities for WP5

and WP6 here in the present WP1 report, since, on the general level, WP1 is meant to ‘‘ensure that

the developed methods, workflows and codes, when used in WPs 3-6, will yield designs that can run

in realistic time scales faster than with the state-of-the-art tools (KPIs 1-6)’’. Nevertheless, it should be

noted that ST1.3.2 (WP1), in particular, does not stipulate as a requirement the additional achieved

capabilities for the posterior strategic tasks of WP5 and WP6 described below (underlined):

• ST5.3.2 (WP5) - Robust optimization of a UHBR Fan [M18-M36]: ‘‘Manufacturing variability data

will be combined with UQ techniques (from WP1) and Hi-Fi multi-disciplinary numerical simulations

to determine the uncertainty in component performance’’.

• ST6.1.2 (WP6) - Evaluation of residual performance and life of Digital Twins [M06-M24]: ‘‘UNICA,

will focus on meshing and CFD analyses required for estimating the performance, considering

the very-nonlinear interaction of the modified shapes and their neighbouring components. This

will require a multi-passage multi-stage unsteady simulation.’’

Even though the preliminary development of capabilities to be used in WP5 and WP6 for the

UHBR Fan (TC3) is not explicitly stipulated in WP1, from the NEXTAIR Plan, it is clear that the capability

to simulate the geometrical variability of ‘real’, manufactured UHBR fan blades in multi-passage,

multi-stage unsteady simulations is a necessary capacity to successfully carry out the planned tasks in

WP5 and WP6 for this testcase. Hence, these are also presented here.

The aerodynamic and manufacturing variation simulation capabilities for WP4, WP5 and WP6 are

achieved thanks to a series of fully internal Rolls-Royce software packages, and the structural capability

is achieved thanks to an in-house Rolls-Royce structural finite element method (FEM) solver and two

additional commercial tools:
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• For the aerodynamic simulation capabilities, the Rolls-Royce in-house codes PADRAM (PAra-

metric Design and RApid Meshing system) [69] and HYDRA-CFD (a suite of CFD solvers) [33] are

used.

• For the reproduction of real manufactured fan blade geometries with manufacturing deviations,

in addition to PADRAM, the in-house software P2S (Point2Surface) [52] and the optimizer SOFT

(Smart optimization For Turbomachinery) [66] are used to construct the digital CAD models in a

process called ‘‘inverse-mapping’’, developed at Rolls-Royce.

• The structural simulation capabilities are achieved thanks to the Rolls-Royce internal finite element

method (FEM) code SC03 [2], the Cambridge Flow Solutions (CFS) meshing package Boxer [13],

and the commercial tool Ansys ICEM CFD [24].

A short description of these software packages is provided in the next section.

2.3.1 Description of the Rolls-Royce In-house Software Used

Rolls-Royce counts with several software tools developed internally to tackle the company’s needs for

engineering analysis of its turbomachinery products and components.

Currently the in-house SOFT-PADRAM-HYDRA (SOPHY) [67] system is used in Rolls-Royce for

aerodynamic optimization. The main elements (optimizer-mesher-CFD solver) can be used separately

or together as a fully integrated, automatic, and flexible system (as shown Figure 16). These elements

are described below.

Figure 16: Workflow of the SOPHY automatic aerodynamic optimization system. From [67].

SOFT [66] provides state-of-the-art optimization libraries, and an integrating platform runnable

both through a graphical user interface (GUI) and in batch mode through Python scripts that takes

in template text files as inputs that define the optimization strategy, cost functions, optimization

parameters, the limits of these parameters, the optimization algorithms to be applied and their

sequence, optimization constraints, and the options for the generation of optimization history files,

as well as post-processing capabilities such as the capacity to generate plots, contours, parallel

co-ordinates, and pareto fronts. This tool is analogous to GEMSEO [19].

PADRAM [69] is an automatic parametric geometry modeller and rapid meshing system with

multi-passage and multi-stage capability (this capability fulfils the requirements for ST6.1.2. In our

multi-fidelity modelling problem, PADRAM receives as input a blade definition file (BDF) that expresses

the geometry of blade streamline sections in cylindrical coordinates (r, θ,a z), as well as a user-defined

mesh configuration file. The meshing options of the multi-block O-H-C grid available to the user

is extensive, including number of nodes across several directions of the blocks, cell clustering, and
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automatic application of cell clustering based on boundary conditions and desired y+ values. The mesh

generation is very fast (in the order of seconds) and fully automated, so it does meet the necessary

condition of not requiring user interaction during the automatic optimization cycle; another necessary

requirement for the multi-objective optimization (MOO) to take place in ST4.3.1, and other work to be

conducted in ST5.3.2 and ST6.1.2.

Apart from rapid and automatic mesh generation, PADRAM also offers a number of different ways

to parametrically and automatically modify the geometry of a blade and re-mesh it from scratch at

each iteration of the optimization cycle [54]. This is done through the input and change in values of a

geometrical blade design parameters (DP) file as well as another file containing the radial (span-wise)

locations of the blade where these geometrical perturbations will be applied. Each design parameter

(DP) that morphs the geometry — also called blade engineering parameter (EP) — controls a particular

degree-of-freedom (DOF) of the blade. A partial summary of five parameters is provided in Figure 17.

Figure 17: Partial description of the capability of the PADRAM design space to morph geometries. Adapted

from [65].

HYDRA [33] is a suite of CFD flow solvers with linear, non-linear, and adjoint capability; both for

steady state (non-time varying) and unsteady state (time-varying) simulations. The suite provides a

consistent framework for input, output, multi-grid acceleration, parallelization, and visualization. The

steady state solver can use both explicit and implicit time-stepping schemes; the explicit utilizes a

standard Runge-Kutta multigrid scheme with local time-stepping, and the implicit steady solver a

semi-implicit Runge-Kutta multigrid scheme with Richardson incomplete lower-upper decomposition.

The adjoint solver Adjoint HYDRA enables to efficiently determine the sensitivity of one (or more than

one) scalar objective functions to any number of small changes in the geometry or the boundary

conditions, proving to be very useful in optimization processes.

With regard to multi-passage and multi-stage capability; full annulus or sector, single stage or
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multiple-stage turbomachinery models (where blade row counts permit) can be simulated, since

both rotating and stationary components can be coupled in the simulation with several boundary

condition options suitable for both steady and unsteady turbomachinery computations, including

periodic boundaries, mixing and sliding planes and phase-lagged periodic setups.

Regarding the turbulence modelling options, the available physical viscous models for RANS

computations include Spalart-Allmaras (with or without helicity-correction), k-ϵ, and k-ω in two

variants: the explicit algebraic stress model (EASM) and the shear-stress transport (SST) k-ω models.

Furthermore, adaptive wall functions are available in HYDRA to cope with cases where the grid

resolution is not sufficient near the solid walls y+ > 1 [53]. For large eddy simulations (LES), the viscous

models available are the detached eddy simulation (DES) based on the Spalart-Allmaras model, the

hybrid DES model, and the Smagorinsky model with near wall damping.

Lastly, a utility of post-processing tools gives the user a wide array of options to interrogate grid and

flow solution data in the output files and perform post-processing functions.

The integrated use of these three tools conforms the SOPHY automatic aerodynamic optimization

system, represented in Figure 16 in a workflow [67].

P2S [53, 68] is a Rolls-Royce proprietary code to perform mesh-based, automated distance-field

computations between surfaces and point-clouds in any combination. Its library version is fully integrated

with PADRAM and HYDRA and can perform multi-data analysis and treatment, including statistical

analysis, amongst other capabilities. It is key in the automated process developed by Rolls-Royce to

model the geometrical variability of manufactured blades (explained in section 2.3.2).

2.3.2 Multi-Fidelity Aerodynamic Simulation Capabilities

As a short introduction, the aerodynamic simulation capabilities developed for the UHBR Fan Testcase

(TC3) comprise four dimensions of fidelity that can be combined as per the requirements of the user:

1. Single-Passage – Multi-Passage: single-blade-passage and multiple-blade-passage (whole-

annulus) capability.

2. Single-Stage – Multi-Stage: simulation of the isolated fan blade stage or multiple-stage simulation

of the blade in its installed configuration: fan rotor blade plus bypass outlet guide vane (BOGV),

engine section stator (ESS) and straightener vane (SV); to take into account neighbouring

component interactions. These neighbouring components are shown in Figure 18.

3. Turbulence Modelling: Steady-RANS – Unsteady-RANS (U-RANS), Favre-averaged Non-linear

Harmonic (FNLH) and Large-Eddy Simulation (LES) (fully resolved or RANS-LES hybrid variants):

capability to model in HYDRA unsteady flow influences with several turbulence models (as

described in section 2.3.1) and to approximate the unsteady flow interactions in a multi-stage

simulation through FLNH.

4. Modelling of Real Geometry Features Elastic rings, vortex generators and geometrical variability

of manufactured blades (see section 2.3.2.

Several combinations of these different levels of fidelity are presented next as examples to

demonstrate the present multi-fidelity approach.

Single-Passage, Single Stage (public test case)
The capability of simulating isolated fan geometries is here demonstrated on the NASA R37 test-case,

which is a public geometry often used for validation of CFD solvers. This is the simplest, low-fidelity (Lo-Fi)

testcase domain possible. A typical set-up is presented in Figure 19, where inlet and exit boundaries
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Figure 18: Domain of the UHBR fan (TC3) including downstream components. From [36].

Figure 19: Typical set-up for the isolated fan simulation for the R37. From [26].

are visible, together with stationary and rotating parts. The periodic surfaces are not shown for clarity,

but are placed at either side of the domain, in the circumferential direction.

The simulation workflow involves the use of the aforementioned RR in-house software: PADRAM

[69] and HYDRA [33]. As previously described in section 2.3.1, PADRAM is capable of creating a

high-quality, highly smoothed multi-block structured mesh of numerous turbomachinery components,

as well as providing a rich set of parameters to modify the design of a component. For this testcase, a

multi-block structured mesh consisting of an O-mesh around the blade and H blocks for the upstream,

passage and downstream domains is constructed in a rapid and robust process, thanks to the use of

templates adapted to the different engine components. The tip gap was meshed using a butterfly

topology in order to limit cell skewness compared to other possible options (H-block, polar mesh). A

view of the mesh on a blade-to-blade surface, in the leading edge region, is shown in Figure 20.

The in-house Rolls-Royce flow solver HYDRA (for more information, see section 2.3.1) is used to solve

the steady RANS equations, with the Spalart-Allmaras turbulence model, given its proven reliability for

this type of compressor flows. Total pressure, total temperature and turbulent intensity radial distributions

are imposed at the inlet along with fixed velocity angle (axial inlet velocity). An exit capacity boundary

condition (modelling the presence of a throttled valve) is applied at the exit. No wall function was

used, as the boundary layer is resolved by clustering the mesh towards the viscous walls.

A compressor characteristic with 3 levels of mesh refinement is presented in Figure 21. Pressure

ratio (PR) and efficiency (EFF) are shown as a function of non-dimensional corrected mass-flow, which
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Figure 20: Close up view of the mesh in the leading edge region

is the ratio between the actual mass-flow and the value at choking, compared to the experimental

values [15].

Figure 21: Simulated R37 characteristic compared to experimental data

Single-Passage, Single Stage UHBR Fan Testcase (TC3)
After an initial validation with a public geometry of the lowest-fidelity domain possible, the same

level of fidelity is applied to the UHBR Fan Testcase (TC3). The only difference in the domain (in terms

of stage components) is that, as opposed to the NASA R37 testcase, a splitter that diverts the airflow

into the bypass outlet guide vane (BOGV) and the engine core stages is present. For meshing the CFD

domain, a multi-block structured mesh consisting of an O-mesh around the blade and H blocks for the

upstream, passage and downstream domains is used; and a butterfly topology for the tip gap block.

A C-topology is used in the meridional plane for meshing the splitter.

For the CFD solver, the same setup described in 2.3.2 is used. HYDRA is configured to solve the

steady RANS equations, with the Spalart-Allmaras turbulence model. The applied boundary conditions

at the inlet and exit are subsonic non-reflective flow, where total pressure, total temperature and

turbulent intensity radial distributions are imposed at the inlet along with fixed velocity angle (axial inlet

velocity), and the subsonic outflow is controlled by exit capacity (modelling the presence of a throttled

valve).

A visualization of the CFD simulation results along with the domain geometry and mesh is provided

below in Figure 22.

Single-Passage, Multi-Stage UHBR Fan Testcase (TC3)
The capability to study the interaction of the fan with neighbouring components to increase the level

of fidelity of the aerodynamic simulation is also demonstrated here. The fan geometry is shown in Figure
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Figure 22: Single-blade, single-passage CFD simulation for the UHBR fan (TC3). Mesh, full domain static

pressure field, and cross-sectional views of the static pressure field and relative Mach number. Images

distorted and not to scale.

23 and consists of the rotating disk (fan blade and hub), the stationary casing and the splitter, but this

time the bypass outlet guide vane (BOGV) and the engine section stator (ESS) are also modelled.

Figure 23: Single-passage, multi-stage UHBR fan (TC3) simulation. Mesh, full domain static pressure field,

and cross-sectional views of the relative Mach number. Images distorted and not to scale.

Again, the different domains are meshed using the Rolls-Royce in-house mesher PADRAM, and

then coupled through the use of a mixing-plane approach. An H-O-H mesh topology is employed for

all blade passages, with the use of H blocks for the upstream and downstream regions. A C-topology is

used in the meridional plane for the meshing of the splitter. The y+ value on all viscous walls is adjusted

to be around unity for a correct resolution of the boundary layer. The flow solver is the Rolls-Royce

in-house software HYDRA, with same boundary conditions and numerical algorithms of the isolated

fan simulation, with the addition of the mixing-plane approach to couple the rows of the multi-row

machine and the use of the helicity-corrected Spalart-Allmaras model in order to better model the

near-stall points.

A visualization of the CFD simulation results along with the domain geometry and mesh is provided

in Figure 23.

The validity of the numerical model was assessed running a characteristic from the near-stall to

near-choke points for two different engine speeds (95% and 103%) and comparing results against

experimental measurements. The comparison is shown in Figure 24 for the total pressure ratio and the

total temperature rise ratio of the entire compression system.
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Figure 24: Simulated characteristics for the UHBR fan (TC3) domain, including the interaction of downstream

components. From [36]

Multi-Passage, Unsteady UHBR Fan Testcase (TC3)
For the highest level of fidelity presented, an unsteady RANS (U-RANS), whole-annulus run of inverse-

mapped, manufactured blades is described. After successful convergence of the inverse-mapping

process, PADRAM‘s capability to mesh an entire row of blades is used, with a resulting mesh of

approximately 160 million cells. The same multi-block structured H-O-H topology for the mesh domain,

and C-topology for the splitter is used. For this aerodynamic simulation, HYDRA is initialized with the flow

field of a previously converged steady-state solution, and three levels of multi-grid are used to ease

the convergence to a solution with an explicit scheme solver. The sliding plane approach is applied

to the inlet and exit boundaries of the fan stage. Periodic boundaries are used at either side of the

blade domain, and a y+ of less than one is achieved on all viscous walls, both static and stationary. A

closeup of the whole-annulus mesh and converged solution is provided in Figure 25.

Figure 25: All-annulus fan simulation (TC3).

Modelling real-geometry features

• Elastic rings
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In order to prevent aero-structural phenomena that affect UHBR fans (such as flutter), some fan

blade models are provided with an elastic ring mounted on the root. New capabilities have

been developed within the Rolls-Royce mesher PADRAM to model the gap derived from such

configuration. Figure 26 shows a three-dimensional view of blade gap meshed thanks to the

new PADRAM capability. The mesh inside the gap is correctly clustered towards the walls for a

correct boundary layer resolution.

Figure 26: Blade gap meshing capability.

• Simulation of Vortex Generators (VG) inside the Blade Passage

Secondary flows are an important source of losses in turbomachinery, as well as of instabilities.

VGs can be used to alter secondary flows, thus the capability of simulating a blade domain

with a VG, as well as of modifying their shape and relative placement is of great importance.

To simulate blade passages with VGs, the overset/Chimera capability available in HYDRA has

been used. The blade passage (without the VG) and a VG domain are meshed separately

with PADRAM, and then coupled through the overset/Chimera capability available in HYDRA.

A view of the surface mesh for the VG and the VG domain (red) inserted in the blade passage

domain (blue) are shown in Figure 27. This approach allows high quality meshes to be generated

Figure 27: VG surface mesh and VG domain coupled with the passage domain.

separately for the 2 domains, independently of the blade and VG geometries, lending itself well

to the use in optimization (WP4). Figure 28 presents the limited streamlines (useful to visualize

the presence of crossflow, an important secondary flow feature) on the hub as modified by the

presence of a VG.
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Figure 28: Limit streamlines at the hub for a case with (black) and without VG (red).

• Modelling and simulation of real, manufactured UHBR fan stages with manufacturing deviations

A graphical user interface (GUI) to run inverse mapping processes has been recently developed

at Rolls-Royce. An inverse mapping process is the process of producing a digital 3D CAD model

of a real, manufactured blade. In other words, it is to ‘reverse-engineer’ or ‘map’ the geometry

of an already manufactured blade, that comes in the form of Coordinate Measuring Machine

(CMM) data points, measured at the factory with a touch-trigger probe, into a digital CAD

file. This concept is illustrated in Figure 29. The resulting measurements and CAD file can then

be used to determine the geometrical deviation of the manufactured blade from the ‘design

intent’ blade. Also, CFD can be run upon it to analyse if and how the manufacturing defects

or deviations from the design intent (within the manufacturing tolerances), are affecting the

blades’ and overall engine fan performance.

Figure 29: Blade scanning with CMM machine.

For this, to obtain the digital CAD model of an existing blade, an optimization process presented

in [68] is used where PADRAM, P2S, and SOFT are run to try to morph or shape the existing ‘design

intent, nominal’ blade geometry into the actual ‘manufactured’ blade geometry (represented

by the CMM datapoints taken at the factory, which is the ‘target’ of the optimization). After

convergence, this process results in the wanted CAD file.

For this, PADRAM, P2S and SOFT are run sequentially with different optimization stages, each

modifying different degrees of freedom of the blade shape, like lean, sweep, skew, thickness, or

leading and trailing edge angle adjustments; all in an attempt to bring down the cost function,

which is the aggregate of the distance field between the ‘design intent, nominal’ geometry and

the actual manufactured geometry, calculated by P2S.

This process of running PADRAM, P2S and SOFT is governed and automated through Python

scripts in the source code of the GUI.

After successful completion of the process, distance-field contour maps can be produced to

assess the matching accuracy of the 3D CAD model with the CMM datapoints taken at the
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factory. An example of these distance-field contour maps is shown in Figure 30, where the CMM

data colour changes according to its proximity to the morphed blade. Before the process is

run, and the blade has not been modified yet (i.e., the CAD corresponds to the design intent

shape), the CMM data shows extreme red and blue colours, corresponding to high distance

values. However, after the process is finished, these colours have changed to green, indicating

that the distance between the surface of the generated CAD model and the CMM datapoints

is near zero.

Moreover, to measure the aforementioned geometrical agreement, detailed inspection of

critical zones of the geometry that affect fan performance (like blade leading edge and trailing

edge) can also be conducted by zooming into the CAD model at the area of interest.

Figure 30: Example of convergence and results of an inverse mapping run. Fan blade images distorted and

not to scale.

Thanks to the PADRAM Design Space [69], manufacturing variations from design intent can also

be quantified for each blade. Deviations of design and aerodynamic parameters of interest

can be plotted radially and analysed to establish correlation between fan increase or decrease

in performance, and its geometrical variability. The aerodynamic performance of the fan can

come either from tested experimental data or from CFD simulations. By way of example, Figures

31, 32 and 33 provide radial distributions of design parameters of interest like sweep, lean, skew,

leading and trailing edge recambering, and blade metal angles (inlet, exit and stagger) as well

as other features of interest that can influence the aerodynamic performance of the fan like the

passage throat area or magnitude and location of the blade’s maximum thickness.

2.3.3 UHBR Fan Structural Simulation Capabilities

The capabilities for FEM (structural) simulation of a fan blade have been developed and tested starting

from the process that was previously developed by UNICA for turbine blades. The present capability is

fully automated and ready to be used inside a multi-disciplinary optimization process for the fan blade.

The structural simulation must be performed only after a preliminary aerodynamic CFD simulation

has been carried out with a PADRAM-HYDRA setup starting from a hot-conditions BDF. Before

performing the structural run, the blade and hub surfaces are exported from a PADRAM setup based

on a cold-conditions BDF. The geometric definition of the fan blade is completed by adding the root

and firtree parts from a CAD file. The different parts are imported into BOXER where a meshing run is

performed to generate the solid computational grid. The meshing process takes about 30 minutes on

24 cores on one of Rolls-Royce’s High-Performance Computers (HPC). After meshing, the solid grid is

imported into Ansys ICEM [24] to perform a format change, which makes the mesh readable for the

Rolls-Royce FEM solver SC03 [2].
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Figure 31: Example of averaged radial distribution of aerodynamic shape parameters of interest for the

fans of 5 different manufactured engines. As in Figure 32, the smooth distribution is achieved by plotting the

interpolation of 5 PADRAM Engineering Parameters across the streamline sections with a 3rd order Bézier

spline.

Figure 32: Example of averaged PADRAM Design Space Engineering Parameters radial distribution for the

fans of 5 different manufactured engines. The smooth distribution across streamline sections is achieved

with a 3rd order Bézier spline interpolation of the PADRAM Engineering Parameters given at 5 control points.

Figure 33: Throat area variation for every blade of 5 different manufactured engines. In dashed lines, the

arithmetic mean of the throat area values for that particular engine is represented.

Figure 34 shows the complete structural mesh for the fan. The static pressure field from the

preliminary CFD simulation is applied on the ‘BLADE’ surface. The ‘FIRTREE’ surface is where the fixed
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constraint boundary condition is applied. The structural solver (SC03) reads the mesh and picks up the

static pressure field on the fan surface from the converged PADRAM-HYDRA CFD simulation. This static

pressure field is extracted from the CFD solution at 20 different heights along the span of the blade as

shown in Figure 34. Being that the pressure field is extracted from a hot-conditions geometry, while the

structural run needs to be performed on a cold-conditions one, the pressure values are automatically

interpolated from the former to the latter prior to being used as a boundary condition for the structural

simulation. After the boundary conditions are applied, including the rotational speed value, the fan

material properties are imported into SC03 and the structural run is performed. The FEM simulation takes

about another 30 minutes on 24 computer cores in one of Rolls-Royce’s high-performance computer

(HPC) visualization nodes. A script is available for the simulation to be submitted to Rolls-Royce’s HPC

systems’ computing queue and thus performed on multiple nodes. This allows for a significant speed

up and for parallel submission of multiple cases. Figure 35 shows the results from a FEM simulation on

the fan in terms of Von Mises Stresses.

Figure 34: Fan solid mesh for structural simulation (A) and pressure boundary condition for the “BLADE”

component extracted from CFD (B). The components of the geometry indicated with dashed lines in (A)

have been exported from the PADRAM-HYDRA setup. Pictures distorted.

The overall process can be described in the following workflow (Figure 36):
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Figure 35: FEM simulation results in terms of Von Mises Stresses (MPa). Contours are being displayed on the

resulting deformed geometry of the fan blade. The undeformed shape is also shown with a blue outline.

Deformation is multiplied by a scaling factor. Picture distorted.

Figure 36: Aero-structural UHBR Fan (TC3) multi-disciplinary optimization (MDO) workflow.
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3 Geometry & Mesh Adaptation for Laminar Wing Design

For the sake of completeness and due to strong overlapping between the two topics (transition

modeling and its adjoint on the one hand, grid adaptation on the other) it was decided to include, in

this report too, the material presented by INRIA in D1.2 too. On the other hand, there are some results

in the part presented by DAV which include results (such as Fig. 47) from collaborative work with INRIA.

The objective of the study carried out by INRIA is the assessment of an anisotropic mesh-converged

solution for the SA-neg-noft2-BCM transitional model. The mesh adaptation process is performed using

the mesh-adaptive solution platform composed of Wolf, the anisotropic local remeshing software

Feflo.a [37, 38, 39] and the field interpolator Interpol [1].

Two cases are considered.

• 2D Zero-Pressure-Gradient Flat Plate run with the a featured-based (FB) error estimator;

• 2D subsonic flow past the NLF4016 airfoil run with the a goal-oriented (GO) error estimator.

3.1 2D Zero-Pressure-Gradient Flat Plate

The first test case considered is the subsonic flow over a 2D flat plate with zero pressure gradient.

The flow conditions are: Mach number M = 0.1443 and Reynolds number Re = 3.34 × 106, with

the latter based on the unit flat plate length. The turbulence intensity specified at free-stream is

Tu∞ = 0.18%. This case corresponds to the Schubauer and Klebanoff [64] and was already used

to calibrate the BCM-model [51]. The FB error estimator considered is based on the L4 norm of the

interpolation error of the local Mach number.

3.1.1 Assessment of an anisotropic metric-based mesh-converged solution with FB error estimator

Figure 37 shows on the left, results from a 500-vertices to a 80 000-vertices adapted mesh: (i) the

mesh-convergence of the drag coefficient CD for the fully turbulent calculation (blue curve); (ii) the

mesh-convergence of the drag coefficient CD for the transitional calculation (red curve).

First, the fully turbulent RANS adaptive process is performed. Second, the solution computed

on a 2000-vertices adapted mesh is used to initialize the transitional calculation. We can see that

both calculations are converged at 20 000 vertices. Figure 37 on the right shows the comparison

between the two skin-friction coefficients on a 20 000 adapted mesh. Transition occurs shortly before

Rex = 3× 106, according to literature.

3.1.2 Transition point mesh-convergence

Our main objective was to assess mesh-convergence solution for the BCM -model, specifically in

terms of the position of the transition point. Figure 37 on the right shows that, during the adaptation

process, the transition point does not oscillate but converge to a specific position. This means that this

model is robust and guarantees mesh-convergence solutions. Particularly, the reader can note that

the transition points does not change anymore since 20 000 vertices.

The resulting adapted meshes are shown in Figure 38. On the left, adapted mesh and solution

for the SA model. On the right, adapted mesh and solution for the SA-BCM model. Both meshes

are stretched along the wall-normal direction by a factor 20, to highlight the leading edge and the

transitional region. We can see that the adaptation process captures automatically all discontinuities in

the flow. Specifically, the leading edge is a discontinuity in terms of boundary condition. The transition

point is a discontinuity in the solution, when passing from laminar to turbulent flow.

A zoom of the transition point is shown in Figure 39. Both meshes are stretched along the wall-normal

direction by a factor 5, to highlight the refinement at the transition point. We can see in detail as the
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Figure 37: 2D Zero-Pressure-Gradient Flat Plate FB anisotropic metric-based mesh adaptation. Left: volution

of the Drag CD coefficient during the mesh-convergence process. N is the number of vertices of the

adapted meshes. Right: skin-friction coefficient Cf on a 20 000 vertices-adapted meshes. Comparison

between fully turbulent calculation and transitional calculation.

Figure 38: 2D Zero-Pressure-Gradient Flat Plate FB anisotropic metric-based mesh adaptation. Left:

adapted mesh and streamwise velocity component field for turbulent solution. Right: adapted mesh for

and streamwise velocity component field for transitional solution. Both meshes are stretched along the

wall-normal direction by a factor 20, to highlight the leading edge and the transitional region.
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adaptation process dispenses the proper number of points according to the complexity of the flow.

The laminar boundary layer requires much less points w.r.t. the turbulent one, to be correctly captured.

Then, we can see the transition to turbulence already in the mesh: the upstream region for the SA-BCM

calculation is laminar, velocity gradients are lower and boundary layer is thin. Downstream, velocity

gradients are higher and boundary layer is thick. Such physical considerations are well highlighted by

the refinement region. In the transition region, adaptation become more isotropic to capture transition.

While being highly anisotropic before and after the transition region.

Figure 39: 2D Zero-Pressure-Gradient Flat Plate FB anisotropic metric-based mesh adaptation. Left: adapted

mesh for turbulent solution. Right: adapted mesh for transitional solution. Both meshes are stretched along

the wall-normal direction by a factor 5 with respect to the streamwise direction.
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3.2 2D subsonic flow past the NLF4016 airfoil

The case considered is the flow around the NLF4016 airfoil at Mach number M = 0.1 and Reynolds

number Re = 4 × 106 based on the airfoil chord length c. Several experimental data are available

for Re ranging from 1 × 106 to 9 × 106, and M from 0.1 to 0.4 [72]. In these experiments a specific

roughness was opportunely sized for each Reynolds number to fix the transition point at 0.075c on both

surfaces.

3.2.1 Assessment of an anisotropic metric-based mesh-converged solution with GO error estimator

The NLF4016 airfoil is run with the goal-oriented error estimator using the drag as the targeted functional.

The SA-BCM model, with fixed free-stream turbulence intensity Tu∞ is used to calculate the adapted

RANS solution. The free-stream temperature is set at T∞ = 300K and the free-stream Turbulence

Intensity at Tu∞ = 0.15%, according to the 1st AIAA Transition Modeling Workshop. However, it

should be stressed that an-induced transition by roughness is totally different by a by-pass one induced

by a fixed free-stream turbulence. Therefore, there is no guarantee that the transition point is the same

as that measured in the experiments.

As previously done for the 2D flate plate calculation, the adaptive process for the SA-BCM model

is initialized with a corresponding SA adapted solution at 10 000 vertices. The process is stopped

when reaching a 300 000 vertices adapted mesh. A polar from 0◦ to 5◦ Angle of Attack each 1◦ is

investigated. The mesh and the solution, for AoA = 0◦ at 30 000 vertices for the SA and the SA-BCM

model are shown in Figure 40. We can see that also in this case, the adaptive process manages to

adapt the mesh to the transition from laminar to turbulent flow.

The drag coefficient CD evolution of SA and SA − BCM calculations during the adaptive

process is shown in Figure 41. We can see that both calculations are mesh-converged at 150 000
vertices.

3.2.2 Transition point mesh-convergence

Figure 42 shows the convergence of the transition point during the adaptation process. As for the 2D

flat plate, the transition point converges to a specific location and it does not change anymore since

the 150 000 vertices-adapted mesh. This mesh-convergence is achieved for all the AoAs investigated.
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Figure 40: 2D flow past the NLF4016 airfoil at AoA = 0◦ using GO anisotropic metric-based mesh adaptation

for 30 000 vertices. Adapted mesh for the fully turbulent solution (left). Adapted mesh for the transitional

solution (right) . Pseudo-viscosity field ν̃ (middle) and streamwise velocity component field (bottom). Both

meshes are stretched along the wall-normal direction by a factor 5 with respect to the streamwise direction.

35



NEXTAIR D1.3

GA No 101056732 DENs to Speed-up MDOs

104 105

N

0.006

0.007

0.008

0.009

0.010
C D

2D transitional NLF0416 airfoil: M = 0.1 Re = 4 106

Wolf - SA (FB)
Wolf - SA-BCM (FB)

Figure 41: 2D flow past the NLF4016 airfoil at AoA = 0◦. GO anisotropic metric-based mesh adaptation.

Evolution of the drag coefficient CD during the adaptation process. Comparison between fully turbulent

calculation (blue curve) and transitional calculation (red curve).
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Figure 42: 2D flow past the NLF4016 airfoil at AoA = 0◦. GO anisotropic metric-based mesh adaptation.

Evolution of the skin-friction coefficient Cf during the adaptation process. The solution is mesh-converged

at the 150 000 vertices adapted mesh.
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3.2.3 Adapted calculations at different Angles of Attack

The adaptive calculations at different Angles of Attack (AoAs) are shown in Figure 43. In order to

accelerate the convergence, each adaptive simulation is initialized at its corresponding adapted SA
solution at 10 000 vertices. The process is confirmed to be robust. As expected the drag CD and lift CL

coefficients increase with increasing AoAs. Specifically, from Figure 44 , we can observe the transition

point shifting towards upstream locations on the suction side. This clearly means that transition occurs

earlier at higher AoAs.
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Figure 43: 2D flow past the NLF4016 airfoil at different Angles of Attack. GO anisotropic metric-based

mesh adaptation. Evolution of the drag CD (left) and the lift CL (right) coefficients, during the adaptation

process. N is the number of vertices of the adapted meshes.
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Figure 44: 2D NLF0416 GO anisotropic metric-based mesh adaptation. Evolution of the skin-friction

coefficient Cf with the Angle of Attack AoA. The adapted meshes are composed of about 300 000
vertices.
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3.3 DAV Contribution

In order to reduce pressure fluctuations which have a negative impact on the transition onset of the

boundary layer, it is important to ensure a smooth curvature distribution. During the optimization process

a set of NURBS control points are chosen as local design variables for the shape definition at each

iteration. The current CAD model definition is at least C2 continuous at each control point. However to

minimize potentially induced pressure fluctuations during the optimization process and enhance both

convergence and shape quality requirements for laminar flow, the use of a smoothing operator taking

into account higher order continuity, i.e. beyond C2, is an important asset. Figure 45-left shows an

example of the curvature distribution of various wing profiles as a function of their NURBS control point

index which defines the shape starting from the trailing edge lower side through a maximum at the

leading edge along to the trailing edge upper side. In this figure a given initial profile is discontinuous

at control point index 11. The figure illustrates a possible new distribution while applying a smoothing

operator seeking to reduce the overall lattice curvature level while maintaining C2 continuity and the

same operator maintaining a quasi G3 continuity at each control point. Figure 45-right shows the

corresponding impact on the pressure level distribution as a function of the chordwise position and the

corresponding control point index has also been indicated. It shows the beneficial impact regarding

the pressure distribution near the leading edge of using a higher order continuity smoothing operator.

Figure 45: Left: example of wing profile curvature distribution as a function of control point index. Right:

example of chordwise wing profile pressure coefficient with corresponding control point index positions.

3.3.1 DAV – INRIA mesh adaptation

The aim of this coollaborative work was to demonstrate Riemannian mesh adaptation on RANS with

transitional model. The primal code is AETHER (DAV RANS code) and our choice for modelization is

SA-noft2-Gamma-Retheta Transition Model (see also deliverable report D1.2, "Assessment of transition

models and their adjoints"). The FB error estimator (INRIA WOLF code) considered is the L4 norm of the

interpolation error of the local Mach number. Our first test case deals with flat-plate. The Schubauer

and Klebanoff flat plate experiment is a useful validation test case for transition models. This case has

a low freestream turbulence intensity and corresponds to natural transition. Figure 46 gives the history

of convergence for skin-friction coefficient Cf .

Black color deals with NASA fine mesh (545 x 385 = 209825 vertices). Red color deals with the starting

mesh (very coarse, 875 vertices)). Blue color deals with intermediate meshes. Green color deals with
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Figure 46: Convergence for skin-friction Coefficient Cf .

the results of mesh adaptation convergence (iteration 18, 4888 vertices). Mesh convergence process

consists of iterations with same complexity (same number of vertices) and increase of complexity, as

shown in Figure 47. Converged result for complexity 2500 is close to NASA fine mesh in terms of Cf

(and so, in terms of transition point).

Figure 47: Complexity of the mesh adaptation process.

Results for starting mesh, for iteration 15, for iteration 18 and results for NASA fine mesh are presented

in figures 48, 49, 50 and 51, respectively. It is concluded that Riemannian mesh adaptation led us both

to a better for aerodynamics solution quality and a dramatically gain in terms of number of vertices.
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Figure 48: Results for starting mesh.

Figure 49: Results for iteration 15.

Figure 50: Results for iteration 18.
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Figure 51: Results for NASA fine mesh.
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4 Adjoint-based Computation of Pareto Fronts

4.1 Efficient adjoint-based Pareto tracing algorithms

NTUA and FOSS worked in tandem on the extension and further development of a gradient-based

Pareto tracing algorithm supported by the adjoint method. This algorithm is put in the form of a

prediction-correction scheme. Once a first point that belongs to the Pareto front has been found, the

algorithm moves from one Pareto point to the next by considering the local curvature of the front.

To do so, a constrained minimization problem is defined and solved, where equality constraints are

imposed to all but one objective function which is to be minimized. The objective functions-related

equality constraints are user-defined values. Formulating the Karush-Kuhn-Tucker (KKT) conditions and

satisfying the requirements of the implicit function theorem results in a linear system, the solution of which

computes the new point which might slightly deviate from the Pareto front due to curvature effects,

[63]. A correction step follows so as to bring the predicted point onto the Pareto front. Any constrained

optimization solver can be used as corrector; herein a Sequential Least Squares Programming (SLSQP)

algorithm, [29] is used.

The prediction-correction scheme is used together with the NTUA in-house GPU-accelerated PUMA

code which solves the flow and adjoint equations, [28]. For the needs of the NEXTAIR project, the

RANS equations for compressible fluids coupled with the one-equation Spalart-Allmaras (SA) turbulence

model [73] and the two equation γ−R̃eθt transition model, [32, 8] (when required), are used. The

continuous adjoint of PUMA includes the adjoint to the turbulence and transition models as well as the

adjoint to the Eikonal equation computing distances from the walls. By doing so, the method computes

accurate gradients which are highly needed by the Pareto front tracing technique.

4.1.1 Problem Formulation

A MOO problem with M objectives to be minimized subject to Me equality and Mie inequality

constraints reads

min f(b) = min{f1(b), ..., fM (b)}
s.t. c(b) = 0 (4.1.1)

g(b) ≤ 0

where b ∈ RN is the optimization (or design variables‘) vector. In what follows, boldfaced characters

indicate a vector.

In gradient-based optimization, the computation of a point on a convex Pareto front can be made

by minimizing the weighted-sum of the M objectives as

min Fw(b) =
M∑
j=1

wjfj(b) (4.1.2)

subject to the constraints of equation 4.1.1, with wj ≥ 0 for j ∈ [1,M ]. A straightforward manner

to populate the front with an adequate number of points, is to repetitively solve problem 4.1.2

using different weight (w) combinations. Such a procedure is computationally expensive, so the

prediction-correction scheme, described below, is used instead. In our case, problem 4.1.2 is solved

only once, with wl = 1 and wj = 0, j ∈ [1,M ], j ̸= l (any other combination of weights could be

used instead) in order to compute a first point on the Pareto front. Alternatively, the first point can be

computed by once solving problem 4.1.3 as discussed below. In this case, the user of the method

should determine target values for all but one of the objective functions.
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4.1.2 Prediction-Correction Scheme

The prediction step starts by re-formulating problem 4.1.1 so as to minimize the first (or any other,

instead) objective function while imposing M−1 equality constraints (over and above to the problem

constraints), namely

min f1(b)

s.t. fk(b) = f̂k (4.1.3)

c(b) = 0

g(b) ≤ 0

where f̂k are user-defined values for the remaining k objective functions ∀k ∈ [2,M ]. Problem

4.1.3 allows the selection of a specific Pareto point (by appropriately selecting f̂k) provided that the

designer knows that such a point exists in the objective space and respects all constraints. On the

other side, if there is no a-priori knowledge of the objective space, solving problem 4.1.2 is the only

way. The Lagrangian of problem 4.1.3 is

min L(b, λ̂,λ,µ) = f1(b)−
M∑
k=2

λ̂k(fk(b)− f̂k)−
Me∑
i=1

λici(b)−
Mie∑
j=1

µjgj(b) (4.1.4)

where λ̂, λ, µ are the vectors of the Lagrange multipliers (λ̂k, λi, µj) for the prescribed (target)

objective functions and the equality and inequality constraints, respectively. The optimal solution should

satisfy the KKT conditions, namely

∇bL(b, λ̂,λ,µ) = ∇bfl(b)−
M∑
k=2

λ̂k∇bfk(b)−
Me∑
i=1

λi∇bci(b)−
Mie∑
j=1

µj∇bgj(b) = 0

fk(b)− f̂k = 0 , ∀k ∈ [2,M ]

ci(b) = 0 , ∀i ∈ [1,Me]

gj(b) ≤ 0 , ∀j ∈ [1,Mie] (4.1.5)

µjgj(b) = 0 , ∀j ∈ [1,Mie]

µj ≤ 0 , ∀j ∈ [1,Mie]

The first four equations of the above system can be re-written as

H(b, λ̂,λ,µ, f̂) = 0 (4.1.6)

By defining a new augmented vector of unknowns z= [b, λ̂,λ,µ]T , formed by all design variables

and all Lagrange multipliers, and applying the implicit function theorem

H(z, f̂) = 0⇔ z=h(f̂) (4.1.7)

where f̂ is the array of the M−1 imposed objective functions; the last part of Eq. 4.1.7 shows that

solution z depends on the selected values of f̂ . It is, thus, straightforward to express the total derivative

of H (and set it to zero, since H = 0 for any value-set of f̂ ) as

∂H

∂f̂
+

∂H

∂z

∂h

∂f̂
= 0

or

∂h

∂f̂
= −

[
∂H

∂z

]−1 ∂H

∂f̂
(4.1.8)
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with

∂H

∂z
=


∇2

bbL −(∇bfk)
T −(∇bck)

T −(∇bgk)
T

−∇bfk 0 0 0
−∇bck 0 0 0
−∇bgk 0 0 0

 and
∂H

∂f̂
=


0
−I
0
0


The dimensions of the

∂H
∂z matrix are (N+M−1+Me+Mie)× (N+M−1+Me+Mie) since∇2

bbL
is a N×N matrix and ∇bfk,∇bck,∇bgk are vectors with N rows and M−1,Me,Mie columns,

respectively.

The gradients of objective and constraint functions (∇bfk,∇bck,∇bgk) are computed using the

continuous adjoint method. The Hessian of the Lagrangian ∇2
bbL is approximated by the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) or Symmetric rank-one (SR1) updating formulas; herein, SR1 is used.

After solving the linear system of Eqs. 4.1.8 for z, a prediction of the next point zpred is given by a

first-order Taylor expansion as

zpred = z +
∂z

∂f̂
∆f̂ (4.1.9)

which simultaneously updates the design vector (bpred) and the Lagrange multipliers. ∆f̂ is the array

including the decided steps in the M−1 objective functions. Since this is a first-order expansion, Eq.

4.1.9 cannot guarantee that bpred (includes in zpred) belongs to the Pareto front and a correction

step in needed to bring this new point on the Pareto front. Eq. 4.1.9 concludes the prediction step.

The new point b∗ on the Pareto front is obtained by solving a minimization problem from an

updated target point using bpred as an initial guess. This corresponds to the so-called correction step

and is carried out using SLSQP to solve the following constrained problem

min f1(b)

s.t. fk(b)− f̂k = 0 , ∀k ∈ [2,M ]

The SLSQP algorithm solves the above optimization problem iteratively and the solution at the (p+1)st

iteration bp+1 is obtained from bp as

bp+1 = bp + αp dp

where dp is the search direction and αp the step size. Compared to the standard SQP algorithm, in

SLSQP the quadratic programming sub-problem is replaced by a least squares one, [62].

4.1.3 Mathematical Example

Let us assume the following (convex) two-objective optimization problem

min

{
f1(b) =

∑M
i=1(bi − 3)2

f2(b) =
∑M

i=1(bi − 4)2
(4.1.10)

with bi ∈ [1, 6], ∀i ∈ [1, N ] and N=6.

To assess the proposed prediction-correction scheme in terms of computational cost, one time

unit (TU) is the cost of computing both objective function values. Given that, for this problem, the

derivatives are computed analytically, their cost is also set equal to one TU for all of them (as if the

adjoint method was used for their computation).

The analytical expression of the Pareto front is known1, so for obtaining the first point on the Pareto

front (being one of the two front edges), problem 4.1.3 with f̂2 = 6 was solved at the cost of 10 TUs.

1
All points with (f1, f2)=N(ω2, (1− ω)2)2 ω ∈ [0, 1].
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A target of 11 Pareto points was set, using a step of f2(b) − f̂2 = 0.6 among points. Each one of

the 9 subsequent points (using the prediction-correction scheme) required on average 7 TUs. For the

last point, 33 TUs were required, resulting in a total computational cost of 106 TUs (10+ 9× 7+33 for

obtaining the 11 Pareto points. It must be stressed that the f2(b) values are computed with increased

accuracy w.r.t. the set target values f̂2; a percent error less than 0.01% for all points is obtained.

To verify the results obtained from the gradient-based method, these are compared with the

analytically derived Pareto front, Fig. 52 left. It can be seen that the proposed method is able to

accurately capture the Pareto front. The cost of 106 TUs is very low compared to the one that any

stochastic method would ask for solving this problem. The right part of the same figure, shows the

position of the predicted points in the objective space (from which each correction step is initiated)

compared to the finally computed Pareto points. The closeness of the points resulted from the

prediction step to the Pareto front enables the fast computation of the front point and makes the

prediction-correction scheme computationally efficient.
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Figure 52: Left: Comparison of the analytically derived Pareto front (red line) and the developed gradient-

based method (filled pink squares). Right: Predictions (empty black circles) and finally computed front

points (filled pink squares); most of the prediction points cannot be distinguished from the final ones.

4.1.4 CFD-based Applications

The prediction-correction scheme is applied to the two-objective shape optimization of isolated airfoils

for maximum lift and minimum drag coefficient. In both examined cases, the MOO problem is defined

as

min

{
f1(b) = cD(b)

f2(b) = − cL(b)
(4.1.11)

In specific, two applications namely the shape optimization of the NACA4415 airfoil at inviscid flow

conditions and the NLF(1)--0416 airfoil at transitional flow conditions are considered. In either case, the

airfoil shape is parameterized using NURBS control lattices, a 10 × 7 for NACA4415 and a 8×7 for

NLF(1)--0416 as shown Fig. 53.

In these cases, one TU corresponds to the cost of numerically solving the flow equations including

the turbulence and transition models (if needed) using PUMA. Also, the assumption that the solution of

the adjoint equations has practically the cost of solving the flow equations is made. Thus, the cost of

solving the primal and the two adjoint equations for the two objective functions is equal to 3 TUs.

Shape Optimization of the NACA4415 Airfoil
The first application deals with the shape optimization the NACA4415 airfoil, at transonic flow
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(a) NACA4415 (b) NLF(1)--0416

Figure 53: Parameterization of the (a) NACA4415 and (b) NLF(1)--0416 airfoils. Control points in blue remain

fixed while red ones are allowed to move in the the normal-to-the-chord direction.

conditions (inviscid flow), with AoA=2.0◦ and M∞=0.7. The red control points (of the 10×7 lattice)

that are allowed to vary in the normal-to-the-chord direction lead to N = 16 design variables in total.

The cost to obtain the first point on the Pareto front (bottom left, Fig. 54) using an adjoint-assisted

gradient-based method for solving problem 4.1.2 with w1 = 1 and w2 = 0 is equal to 45 TUs. For

computing 10 more points on the front, two scenarios were considered:

1. repetitively solve problem 4.1.2 with user-defined f̂2 (herein cL) values, initializing the algorithm

from the previously computed point on the Pareto front,

2. apply the above mentioned prediction-correction algorithm.

In either case, the target f̂2 values are the same. For the former, computing each front point costs,

on average, 21 TUs leading to a total of 255 TUs for 11 Pareto points. On the other hand, the

prediction-correction algorithm needs about 12 TUs per point or 165 TUs, in total, which makes it

more efficient in terms of computational cost. The resulted fronts are compared in Fig. 54. The airfoil

geometries of some of the front points as well as the Mach number field around them are given in Fig.

55.
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Figure 54: Comparison of the fronts resulted from the repetitive solution of problem 4.1.2 (Scenario 1; empty

black squares) and the developed prediction-correction gradient-based method (Scenario 2; filled pink

squares). Values on the axes are non-dimensionalized with the objective function values of the baseline

geometry. Results obtained using the PUMA code.
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(a) Point 1; min cL, min cd (b) Point 6 (c) Point 11; max cL, max cd

Figure 55: Mach number field around the airfoils of points 1, 6 and 11 (starting from the bottom left point,

Fig. 54) resulted from the prediction-correction algorithm. Mach number legend differs among the various

points.

Shape Optimization of the NLF(1)-0416 Airfoil
In the second application, the NLF(1)--0416 airfoil is optimized at transitional flow conditions with

AoA=2.03◦, M∞=0.1, Re=4 · 106 and Tu=0.15%. The gradients of the objective functions are

accurately computed using the continuous adjoint of PUMA that differentiates not only the turbulence

model but also the transition model as described in D1.2. The airfoil is parameterized using a 8×7
lattice and the total number of design variables is N = 12.

In this case, only the predictor-corrector method is used as a gradient-based one. The cost of

obtaining the first point on the Pareto (bottom left) is equal to 15 TUs. With, more or less, the same cost,

all subsequent points can be computed, leading to a total of 165 TUs. This front is compared with the

front obtained using a stochastic population-based method at the cost of 500 TUs, Fig. 56. It can be

seen that the gradient-based method may compute points in areas of the design space not explored

from the stochastic algorithm as well as points dominating those found by the stochastic algorithm. In

the ‘‘vertical’’ area of the front (top right) the points of the stochastic algorithm dominate those of the

gradient-based method.
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Figure 56: Comparison of the Pareto front resulted from the stochastic population-based method (empty

red circles) and the developed gradient-based method (filled pink squares). Values on the axes are

non-dimensionalized with the objective function values of the baseline geometry.

Figure 57 presents three airfoil geometries from the front computed by the gradient-based algorithm.

These correspond to front points 1, 6 and 11, starting from the bottom left-point, i.e. the one with

minimum cL and cD values.
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(a) Point 1; min cL, min cd (b) Point 6 (c) Point 11; max cL, max cd

Figure 57: Airfoil geometries for points 1, 6 and 11 resulted from the gradient-based algorithm.

To conclude, an adjoint-based method that computes Pareto front in multi-disciplinary optimization

has been devised and demonstrated. This method is now ready to be used in the application-centric

work packages of NEXTAIR by NTUA and FOSS.

4.2 Stochastic Tangential Pareto Dynamics

Inria PLATON team has worked on developing methods for multi-objective stochastic programming

and uncertainty quantification. Introducing stochastic uncertainty into optimization problems allows for

the algorithmic search for risk averse solutions to engineering problems. This requires us to transform the

quantities of interest into random variables. Using the framework of stochastic programming, we work

to minimize the mathematical expectation of the set of quantities of interest. Computing the average

can be computationally costly, requiring tens of function evaluations for each optimization step, and so

new methods are needed in order to manage computational costs. We decompose the problem into

two parts, sampling and identification. To generate samples, we first debias the stochastic multigradient

direction of descent by addressing the problem at the source, the correlation in the estimation of the

squared Jacobian used in the stochastic subproblem. Then, as opposed to restarting the algorithm to

generate samples, we explore the Pareto front directly by adding a nonvanishing noise term tangential

to the Pareto front to diffuse across the whole front. This can be seen as sampling from a potential

function which has minima along the Pareto front. We go on to identify the Pareto front by building a

nearest neighbor model with points generated only during the course of optimization. This is calibrated

using the Hypervolume indicator. Finally, we estimate joint probability of each generated point being

undominated and provide joint confidence intervals around each point using a bootstrap estimator.

4.2.1 Problem Formulation and Background

We direct the reader to the stochastic multi-objective optimization framework. Given a probability

space (Θ,F , µ) and a set of k quantities of interest F := {fi(x,W(θ))}i=1,...,k, fi : X ⊆
Rd×W(θ)(Θ) 7→ R, our goal is to find all x∗ such that

x∗ ∈ argmin
x∈X

{E[fi(x,W(θ))], ...,E[fk(x,W(θ))]}. (4.2.1)

We denote the set of expectations G := {gi(x)}i=1,...,k with each gi = E[fi(x,W )]. This formulation

is sufficiently general for risk averse optimization, were it is desirable to minimize a function and its higher

moments [58, 59]. For example, we can simultaneously minimize both the mean and variance by taking

f1 = f(x,W(θ)) and f2 = (f(x,W(θ)) − E[f(x,W(θ))])2. If we have analytical expressions

for each of the values, E[fi(x,W(θ))], we would have no need to invoke stochastic programming

and could treat this problem as we would a deterministic one. Ignoring the random nature of the

problem by naively substituting samples of the quantities of interest, fi(x,W(θ)t), for their true value

in a classical multi-objective method could lead to convergence to a suboptimal point. We will use a

Robbins Monro type algorithm, stochastic multigradient descent, to find the minima of equation 4.2.1

using single samples of the quantities of interest and their gradients at each iteration [46]. This approach

has the advantage of provably converging to the Pareto front without requiring the approximation of

averages or an external model [46].
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Pareto Optimal Probability
Identifying members of the Pareto set is also more complex in the stochastic case. If we do not have

direct access to the values E[fi(x,W(θ))] we must estimate them. This estimation has an associated

variance, complicating our reasoning and motivating a probabilistic concept of Pareto dominance.

Given a set of individual solutions I := {yi}i=1,...,N where yi = F (xi,W(θ)i) are samples from F
we will use the Pareto optimal probability as defined in [57].

Definition 1 (Pareto Optimal Probability).

PI(Ik /∈ P ) = 1− PI( ∩
j ̸=k

Ij ≺ Ik) (4.2.2)

Where P denotes the Pareto set. Evaluating this probability requires knowing the joint distribution

over all elements of I . Since this is not generally tractable, it has been approximated using the

subadditivity of PI [56]. Using, for example, PI(∩j ̸=kyk ⪰ yj) ≤ maxyj ̸=yk
Pyk,yj (yk ≻ yj), gives

a lower bound on the Pareto optimal probability. We estimate the Pareto optimal probability using a

bootstrapping approach to capture more information about the possible Pareto optimal points.

Stochastic Multigradient Descent Algorithm
We now turn our attention to the stochastic formulation of the multigradient descent algorithm,

SMGDA. There has been some question as to the convergence of the SMGD algorithm, even in the

strongly convex case [79]. Using the tools we have developed, we give new proof of its convergence

which extend to the nonconvex biased case. Improved understanding of the behavior of the SMGD

algorithm allows us to debias the computation of the stochastic multigradient. Which can now be

made to converge across the whole Pareto front.

Instead of finding Pareto stationary points by calculating the gradients of G, ∇E[fi(x,W(θ))],
and using a deterministic approach, we replace the gradient calculation with an estimate from a

single sample of W(θ), denoted W(θ)i.

Objectives Gradients

Deterministic g(x) ∇g(x)
Stochastic E[f(x,W(θ))] ∇f(x,W(θ)i)

Where we assume that E[∇f(x,W(θ))] is an unbiased estimator of the true gradient with finite

second moment.

It is unclear how to find a direction of descent from individual gradients in a multiobjective

optimization problem. One approach, pioneered in the deterministic case in [16], has been extended

to the stochastic case, the multigradient. We search for a direction of descent at each iteration by

solving the subproblem [16],

∇C
x{F}(xt) = argmin

d
max

i
⟨∇fi(xt,W(θ)t),d⟩+

1

2
||d||22. (4.2.3)

The logic behind this strategy is a straightforward extension of single objective optimization theory.

Indeed, we would search for a direction of descent, v, such that ⟨∇f(xt,W(θ)t),v⟩ ≤ 0 by solving

the equation, vt = argmind⟨∇f(x,W(θ)),d⟩ + 1
2 ||d||

2
2. In the multi-objective case, if the point

xt is not on the Pareto set, we should have that ⟨E[∇fi(xt,W(θ)t)],E[∇C
x{F}(xt,W(θ)t)]⟩ ≤ 0

for all i. If this criterion is not met by one of the objectives, then we cannot produce a simultaneous

improvement on all objectives and we have identified a member of the Pareto set.
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It is often easier to solve for the direction of descent by taking the dual of eq. 4.2.3 , giving the

multi-gradient the form

∇C
x{F}(x,W(θ)) = {

k∑
i=1

α∗
k∇fi(x,W(θ)) | α∗ = argmin

α∈∆k−1

α⊤J(x,W(θ))J(x,W(θ))⊤α}

(4.2.4)

Where∆k−1 is the k−1 dimensional simplex. Iterates take the formxt+1 = xt−εt∇C
x{F}(xt,W(θ)t).

We also require that εt be a sigma suite, e.g. it meets the following two critera,∑
t

εt =∞
∑
t

ε2t <∞ (4.2.5)

It has been shown that this approach converges to a point on the Pareto front under heavy

assumptions. There is, however, a bias in the calculation of the stochastic multigradient. This prevents

the algorithm from converging to an arbitrary point along the Pareto front. Part of our original

contribution is to show that this algorithm converges to the Pareto front in the nonconvex and biased

case. This is used in our sampling approach in order to efficiently sample points along the whole of the

uncertain Pareto front.

4.2.2 Description of The Algorithm

Our approach decomposes the problem of estimating the uncertain Pareto front by decomposing

it into sampling and identifying stages. To ameliorate the bias in the SMGD algorithm and generate

samples along the Pareto front we augment the standard multigradient descent iterates in two ways.

First, we introduce a novel debiasing strategy which allows the algorithm to converge to the whole of

the Pareto front. Then, to explore the Pareto front as well as overcome any remaining bias, we add a

noise term which will allow the algorithm to explore directions tangential to the Pareto front.

Because of the added noise term, this approach efficiently explores the area around the minima

and will not stay stuck in a saddle point, leading to a dense characterization of the Pareto front with

less wasteful computation when compared to multiple restarts. In the second phase, once we have a

collection of samples from a noise ball around the Pareto front, we must determine the set of Pareto

optimal design points and estimate the location of the true Pareto front. However, we do not have

samples of curves from which to make confidence intervals. Instead, we have a collection of points,

each a sample from a possible Pareto front. To form a cohesive picture from these snapshots, we

form preliminary estimation the Pareto front using local averages. Then, we create both bootstrap

confidence intervals and estimate the fitness of each potential design point to give a characterization

of the whole of the Pareto front with uncertainty. Our strategy does not require the full objective

functions or gradients to ever be evaluated, making the extra gradient descent steps worthwhile and

computationally tractable.

Debiasing SMGDA
To calculate the stochastic-multigradient we would like to use E[JF (x,W(θ))]E[JF (x,W(θ))]⊤,

which would be equivalent to using JG(x), the deterministic Jacobian matrix. Instead, we only

have access to samples of the matrix JF (x,W(θ))JF (x,W(θ))⊤. We notice that the two are not

unrelated quantities as we have the relation,

E[JF (x,W(θ))JF (x,W(θ))⊤] = ΣJF (x,W(θ)) + E[JF (x,W(θ))]E[JF (x,W(θ))]⊤ (4.2.6)

where ΣJF (x,W(θ)) denotes the covariance matrix of the gradients of F .

51



NEXTAIR D1.3

GA No 101056732 DENs to Speed-up MDOs

To debias the stochastic multigradient we first compute an online estimate of ΣJF (x,W(θ)) using

the recursion,

µ̂t+1 = γtµ̂t + (1− γt)Jf (xt,W(θ)t) (4.2.7)

Σ̂JF ,t+1 = γtΣ̂JF ,t + (1− γt)
(
JF (xt,W(θ)t)JF (xt,W(θ)t)

⊤ − µ̂tµ̂
⊤
t

)
(4.2.8)

using individual samples of JF (x,W(θ)) and γt ∈ (0, 1). We then calculate α∗ using the modified

formulation.

α̂∗(b) = argmin
α∈∆k−1

α⊤(JF (x,W(θ))JF (x,W(θ))⊤ − Σ̂JF (x,W(θ))

)
α. (4.2.9)

We finally calculate a debiased form of the stochastic gradient

∇̂C
x{F}(x,W(θ)) :=

∑
i

α̂∗
i∇fi(x,W(θ)). (4.2.10)

This approach has the advantage of not requiring excess computation in individual rounds and

placing less assumptions on the required behavior of α∗ while also effectively reducing the bias in the

calculation of∇C
x{F}(x,W(θ)).

Tangential Pareto Dynamics
To find and explore the Pareto front we generate a sequence using the recurrence relation,

xt+1 = xt − εt∇̂C
x{F}(xt) +

√
2εtβ−1Tt, (4.2.11)

with Tt ∼ N (0, PP⊤) with P such that Tt is tangential to the Pareto front, ∇̂C
x{F}(xt) is the direction

of descent calculated with debiased parameters α̂∗, and β an inverse temperature parameter set by

the practitioner.

Since in this setting we do not have a priori information, particularly about the Pareto front, we have

to estimate the direction tangent to the Pareto front and the location of the Pareto front. To do this,

we can use the stochastic multi-gradient information since the gradient will always have a component

perpendicular to the front. At each iteration, choosing γt ∈ (0, 1), we calculate a moving average,

∇C
x{F}t+1 = γt∇C

x{F}t + (1− γt)∇̂C
x{F}. (4.2.12)

And the projection matrix,

Pt,i,j = δi,j −
1

||∇C
x{F}t||2

∇C
x{F}t,i∇C

x{F}t,j , (4.2.13)

where δi,j denotes the dirac delta function. Setting Tt = PtZt with Z ∼ N (0, 1d×d) allows us to take

a step forward as defined in eq. 4.2.11 .

The goal of this approach is to explore the whole of the Pareto front, and allowing εt or γt to go

to zero would create a unique limiting distribution centered at x∞. In order to insure that all points are

reached we are willing to allow for a slightly higher amount of noise in the sampled points and so we

define a pair of sequences

{εt}t=0,...,∞ := ε0 ≥ ε1 ≥ ... ≥ ε∞ > 0 (4.2.14)

{γt}t=0,...,∞ := γ0 ≥ γ1 ≥ ... ≥ γ∞ > 0 (4.2.15)

Which prevents the algorithm from having a limiting distribution centered on a single point.
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Algorithm 1 Summary of Sampling Algorithm

Input {εt}, {γt},x0.

Initialize µ̂0 = 0, Σ̂JF ,0 = 1d×d, t = 1,∇C
x{F}0 = 0.

while Running do
Query Stochastic Oracle for JF (xt,W(θ)t) ▷ Referred to as JFt below.

µ̂t ← γtµ̂t−1 + (1− γt)JF,t
Σ̂JF ,t ← γtΣ̂JF ,t−1 + (1− γt)(JF,tJ

⊤
F,t − µ̂tµ̂

⊤
t )

α̂∗ ← argminα∈∆k−1 α⊤(JFtJFt − Σ̂JF ,t

)
α

∇̂C
x{F}t ← J⊤

Ft
α∗

∇C
x{F}t ← γt∇C

x{F}t−1 + (1− γt)∇̂C
x{F}t

Pt ← 1d× d− ∇C
x{F}t∇C

x{F}
⊤
t

||∇C
x{F}t||22

∇C
x{F}t∇C

x{F}
⊤
t

Zt ∼ N (0, 1d×d)

xt+1 ← xt − εt∇̂C
x{F}t +

√
2εtβ−1PtZt

t← t+ 1
end while

Inferring the Pareto set and Pareto Front
Having a set of samples, {(x1,F(x1,W(θ)1)), ..., (xn,F(xn,W(θ)n))}, we must now determine

the Pareto front and the Pareto set. We do this by first mapping our samples into objective space, then

assessing their Pareto optimality to determine the Pareto front, and finally looking at the preimage to

determine the Pareto set.

For the first task, we must find a mapping

Ĝ(x) : Rd 7→ Rk,x 7→ [E[f1(x,W(θ))], ...,E[fk(x,W(θ))]].

Unfortunately, we only have access to previously collected samples using algorithm 1, which

are almost surely not directly on the Pareto front. We approximate their expected values using

k-nearest-neighbor regression, a flexible fully nonparametric approach with few hyperparameters that

converges under light assumptions [7]. Calculating the number of neighbors is equivalent to finding

the best smoothing of our data. Using too few neighbors results in a granular and overly noisy Pareto

front. Too many, though, and we overwrite the local nature of the estimate and instead compute

a global average. To track the quality of our estimate and calibrate the number of neighbors we

sequentially add neighbors and search for an elbow in the hypervolume indicator, a commonly used

performance metric in multi-objective optimization [23, 81]. A rapid change in the hypervolume

indicator corresponds to an oversmoothing of the local average, and so to prevent oversmoothing we

set the number of neighbors to be equal to half of the ’elbow’ value, detected through the kneedle

algorithm [75].

Our next task, assessing the relative dominance between points, is now a probabilistic one.

Using the mapping, Ĝ(x), we would like to know if an individual Ik in the set of n tuples I :=
{(x1, Ĝ(x1)), ..., (xn, Ĝ(xn))} is undominated, e.g. ∄Ij ∈ I s.t. Ij ≺ Ik. Since there is noise in

the estimation of the mean, a direct comparison between vectors in k dimensions is likely to lead

to suboptimal conclusions. Instead, we use the Pareto optimal probability defined in eq. 1, which

requires the joint pdf across individuals, PI . For this we take a bootstrapping approach. For each

xi we first resample individual Ii m times, generating a set of bootstrap estimates {Î(1)i , ..., Î
(m)
i }ni=1

for each point. We then approximate the Pareto optimal probability using the bootstrap estimator

PI(Ik /∈ P ) ≈ 1− 1
m

∑m
p=1 1(∃j s.t. Î

(p)
j ≺ Î

(p)
i ).
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To estimate the set of optimal design points, we take as P (ĜX ) the set

P (ĜX ) = {xi | Pi > c} (4.2.16)

Where c is a user defined cutoff. With this estimation of the set of Pareto optimal points and

corresponding bootstrap estimates of Ĝ(x). We can also generate bootstrapped confidence intervals

in objective space by discretizing the space into a set of k dimensional boxes, B1,...,k, where in each

dimension there are l(k) boxes. A confidence interval for dimension d can be made by ordering the

elements in the union of all the boxes in the dth row/column D := {∪B...,d,...}, and taking appropriate

quantiles.

CI(d) = [Dα, D1−α] (4.2.17)

Where Dα is the α quantile of the samples in collection D. The preimage of D can be used to

compute a confidence interval in design space. For a robust estimate of both the Pareto front and

Pareto set, we use the median of D.

4.2.3 Mathematical Example

We look towards a stochastic version of a classic bi-convex problem

f1(x,W(θ)) = (x − 5√
2
)⊤(x − 5√

2
) (4.2.18)

f2(x,W(θ)) = x⊤x (4.2.19)

With x ∈ R2
, W(θ) ∼ N (0,12×2). We see that E[f1(x,W(θ))] = (x − 5√

2
)⊤(x − 5√

2
) + 1

and E[f2(x,W(θ))] = x⊤x + 1. This problem has a Pareto set which forms a straight line in design

space inbetween 0 and
5√
2
1. With 1000 evaluations of the quantities of interest, the generated 95%

confidence intervals cover a large portion of both the Pareto set and Pareto front over 71 unique

points. See figure 58 for a visual representation, where we have juxtaposed our estimation with the true

Pareto front. We also include the average area of the confidence box. If the average area is low,
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Figure 58: 95% Confidence intervals (yellow shading) generated through the proposed approach with 1000

evaluations of the quantity of interest cover almost the whole Pareto front and Pareto front (set).

while the coverage is high, then we say that the Pareto front (set) is estimated with high precision.
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4.3 The modified Normal Boundary Intersection algorithm for efficient Pareto fronts computation (IRT)

4.3.1 Overall objectives

The Normal Boundary Intersection optimization algorithm allows Pareto fronts to be computed by

solving a set of single objective optimization problems [9]. This is an advantage because it allows

efficient algorithms to be used for these subproblems, even in high dimension, such as gradient-based

optimizers using adjoint derivatives. One of the main drawbacks of the classical weighted sum of

objectives, which is similar to the creation of single objective subproblems, is that the points obtained

on the Pareto front are not evenly distributed. The NBI algorithm ensures that the points obtained are

evenly spaced. It is therefore more computationally efficient for a given target accuracy.

However, not all points obtained by the NBI algorithm are Pareto optimal. Therefore, the algorithm

was improved by Shukla in [70] so that weak Pareto optimality of solutions is guaranteed without losing

its ability to generate a set of evenly spaced solutions. Another improvement by Shukla allows to avoid

solving some subproblems if it can be known in advance that their solutions are not on the Pareto front.

4.3.2 Description of the algorithm

The main idea of the algorithm is to first compute the extrema of the Pareto front, i.e. the individual

minima of each objective. This is shown in Figure 59 as F1* and F2* for a two objective problem.

Figure 59: Main idea of the mNBI algorithm: the uniform Pareto front discretization from [9].

Figure 60 describes the main computation steps of the algorithm.

The normals to the convex hull of each minimum are discretized in a uniform way, thanks to the

approach proposed in [9]. The β vectors are sampled. This defines N sub-optimization problems with

a new variable t to maximise, and the multi-objective function f appears in a new inequality constraint

involving the normal direction and the anchor point on the convex hull of each minimum. Figure 59

shows well the solution obtained thanks to this constraint. The use of inequality constraints by Skula

instead of the original formulation by Das and Dennis, which used equality constraints, allows to obtain

Pareto optimal points in situations D and E, which is a significant advantage.

In the following sections we validate the mNBI algorithm on 3 different analytic benchmark

problems. This also allows to illustrate the key mNBI features:

• user controlled discretization of the Pareto Front,
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Figure 60: mNBI Algorithm main steps

• obtaining convex and non-convex Pareto fronts,

• the use of Gradient-based and gradient-free sub-optimization algorithms.

4.3.3 Numerical experiments on the Binh-Korn problem

The Binh-Korn problem is a famous and simple bi-objective optimization problem from [4].

In Figure 61 we illustrate the obtained Pareto fronts with two variants of the algorithm, one using

the gradient-based SLSQP (mNBI/SLSQP [29] variant) and the other using the gradient-free COBYLA

(mNBI/COBYLA [55]) algorithms for subproblem solution. It clearly shows the nice even repartitioning of

the obtained Pareto fronts at convergence. The post-processing also shows the intermediate points in

the optimization history that are not dominated in green, but are probably not optimal. The algorithm is

also computationally very efficient, as very few intermediate iterations (in blue) are needed. All Pareto

fronts are consistent, which also validates the approach.

4.3.4 Scalability with respect to discretization: gradient enhanced MOO

The next figure compares the scalability of the algorithm, in terms of the number of points on the

Pareto fronts, of the mNBI/SLSQP and mNBI/COBYLA variants. Analytic derivatives of the Binh-Korn

problem are provided for mNBI. The analytic derivatives of the subproblem objective and constraints

are computed in our implementation. The gradient-based variant shows a dramatic reduction in

computation time (a factor of 10 in dimension 60).

4.3.5 Binh-Korn : mNBI vs NSGA2 genetic algorithm

In the following experiment, we compare mNBI/COBYLA with the famous NSGA2 genetic algorithm

[12], which serves as a reference. The figure 63 compares the results obtained by the two derivative-free

algorithms for two different computational budgets: 340 and 630 function evaluations. Overall, the

Pareto fronts obtained are consistent. The one obtained by NSGA-2 is more refined, but many more

points are far from the Pareto front in the optimization history. Also with NSGA-2 some areas are not well

refined, this is not controlled. mNBI/COBYLA has a slightly better precision, the obtained optimal points

are better than those obtained by NSGA-2. However, this problem is very simple and in low dimension,

in the following sections we will scale the dimension of the problem, which will change the conclusions.
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Figure 61: Pareto fronts obtained by the mNBI/SLSQP and mNBI/COBYLA algorithm on the Binh-Korn

problem,

Figure 62: Pareto fronts obtained by the mNBI on the Binh-Korn problem with the gradient-based SLSQP

and gradient-free COBYLA algorithms for the sub-problems resolution.

4.3.6 Fonseca Flemming problem: non-convex Pareto front

The Fonseca-Flemming bi-objective benchmark problem [17] is interesting because the Pareto front is

not convex. This can be a difficulty for some classes of multi-objective optimizers. As shown in 64, this is

not a difficulty for mNBI, which efficiently computes the expected Pareto front.

4.3.7 Fonseca Flemming problem : mNBI vs NSGA2 genetic algorithm scalability

An interesting feature of the Fonseca-Flemming problem is that its input dimension can be increased.

This scalability makes it possible to compare the efficiency of the mNBI/COBYLA algorithm with that

of the NSGA-2 algorithm when this dimension is increased. This is particularly important because the

target applications in NEXTAIR are mostly in high dimension.
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Figure 63: Pareto fronts obtained by the derivative free mNBI/COBYLA and the NSGA2 genetic algorithm

on the Binh-Korn problem

Figure 64: Pareto fronts obtained by the mNBI-COBYLA algorithm on the Fonseca Flemming problem

Figure 65 shows the obtained Pareto fronts in input dimension 3, 4 and 5, which is still low. We limited

this input dimension because it is visible that the performance of NSGA-2 decreases rapidly with the

dimension, both in terms of cost and precision of the obtained Pareto front. The computational budget

was limited to 500 objective function calls, which was always a limit for NSGA-2, while mNBI/COBYLA

did not require more than 142 evaluations. The input dimension is only limited by the ability of the

sub-optimizer to solve the problem for mNBI, so it could easily be thousands if analytic derivatives are

provided. It is not surprising that Genetic Algorithms scale poorly with the dimension of the input space,

both for analytic and wing design problems [42].

4.3.8 Poloni’s problem: avoiding holes in the Pareto front

The Poloni’s problem is described in [11] as it is a classical benchmark for genetic algorithms. Its main

feature of interest is the presence of a hole in the Pareto front.
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Figure 65: Pareto fronts obtained by the mNBI-COBYLA and NSGA2 algorithms on the Fonseca Flemming

problem for varying dimensions of the design variables.

Figure 66: Pareto fronts obtained by the mNBI-COBYLA and mNBI algorithms on the Polini’s problem, with

varing target number of points on the Pareto front.

Figure 66 shows the Pareto front obtained with the mNBI/COBYLA algorithm, with varying numbers

of target points. The algorithm successfully obtains the Pareto front. A very interesting feature of the

mNBI implementation is that it does not compute all the a priori prescribed subproblems (defined by

the β matrix) if some regions are found to be dominated. This is particularly useful for this problem when

the number of target points is high, as it reduces the computational cost.
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4.3.9 Discussion and conclusion

The mNBI multi-objective optimization algorithm was implemented in Python. The algorithm has been

validated and its properties illustrated on benchmark problems:

• user controlled Pareto front discretization,

• ability to greatly reduce computation time when gradients are available,

• more accurate and cheaper than GA (NSGA2) for moderate dimensions and upper ( >5),

• avoids dominated regions in the Pareto front.

In conclusion, the mNBI algorithm is a very promising and well validated technique that is ready for

use on real high-dimensional test cases.

As future work, we will implement a feature that allows the user to refine a specific region of the

Pareto front. This is of course possible with the mNBI algorithm by selecting existing points on the Pareto

and refining the sampling on the β matrix in the convex hull of the selected points. mNBI will be

integrated into GEMSEO [20]. It will be open sourced in the next version of GEMSEO.
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5 Unsteady Adjoints Running at Realistic Time Scales, in MDO

5.1 ONERA contribution

ONERA developed a modular time/spatial parallel Time Spectral solver and the associated adjoint

solver, to introduce unsteady/dynamic constraints from Hi-Fi simulations in the design process. To this

aim, a CFD solver independent high-level Python abstraction layer was developed and extended to

deformable grids. All the operations deriving from the space discretization were performed by the elsA

CFD code.

5.1.1 Modular TSM solver

Theoretical background
The semi-discrete governing fluid equations resulting from a Finite Volume discretization process can

be written as
∂VW

∂t
+R(W, t) = 0 (5.1.1)

where W is the fluid conservative variables vector, t is time, V is a block-diagonal matrix containing

the cell volumes and R(W, t) is the residual computed from the fluxes and eventual source terms. The

TSM method is used to seek for time periodic phenomena of pulsation ω. It consists in first projecting the

conservative variables and residual vector in the Fourier space and in truncating the Fourier Series to

keep the first N harmonics. The aplication of the Inverse Fourier Transform to equation ( 5.1.1 ) written

in the Fourier domain allows then the expression of the latter equation at the M = 2N + 1 instants of

the time sampling of one period. Such a process yields the expression of the time derivative term at

the nth instant

∂W

∂t

∣∣∣∣
tn

= Dt(Wn) =
M−1∑
j=0

dnjWj (5.1.2)

with

{
dnn = 0

dnj = ω
2 (−1)

(n−j) csc
(
π(n−j)

M

)
The fluid equation at the nth instant can then be written as a steady equation

|V |∂Wn

∂τn
+Rn + |V |Dt(Wn) = 0, 0 ≤ n < M (5.1.3)

where Wn is the fluid conservative variables vector at the nth instant and |V | is a block-diagonal

matrix containing the cell volumes. The pseudo time term |V |∂Wn
∂τn

is added in order to help in stabilizing

the time integration scheme. It is discretized by a first-order scheme

|V |∆Wn

∆τn
+Rn + |V |Dt(Wn) = 0, 0 ≤ n < M (5.1.4)

where ∆Wn = Wq+1
n −Wq

n is the solution increment between iterations q and q+1, and ∆τn is the

pseudo-time increment computed using a local time-stepping strategy and based on a CFL number.

The backward-Euler implicit scheme is derived by differentiating the residual and the time-spectral

source term at Wq+1
n . Let Jn = ∂Rn/∂Wn be the Jacobian matrix of the residual vector, we have

Rq+1
n ≈ Rq

n + Jn∆Wn (5.1.5)

The time spectral derivative operator Dt being linear it follows directly that

Dt(W
q+1
n ) = Dt(W

q
n) +Dt(∆Wn) (5.1.6)
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Substituting ( 5.1.5 ) and ( 5.1.6 ) in ( 5.1.4 ) we obtain the fully implicit TSM formulation(
|V |
∆τn

+ Jn + |V |Dt(.)

)
∆Wn = −Rq

n − |V |Dt(W
q
n) = −RTSM (Wq

n) (5.1.7)

Then the fully coupled system with all flow time instances gathered in vectorW = (W0,W1, · · · ,WM−1)
T

can be written as

[A]∆W = −RTSM (Wq) (5.1.8)

with the resulting Jacobian matrix given by

[A] =


|V0|
∆τ0

+ J0 |V1|d1
0 . . . |VM−1|dM−1

0

|V1|d0
1

|V1|
∆τ1

+ J1 . . . |VM−1|dM−1
1

...
...

. . .
...

|VM−1|d0
M−1 |VM−1|d1

M−1 . . . |VM−1|
∆τM−1

+ JM−1

 (5.1.9)

where dj
n = diag(dnj) = dnjI. In the expression above we have emphasized that the volume matrix

|Vn| may depend on the time instance for the case of an ALE formulation with a deforming mesh.

Imlementation
A TSM solver requires several operations which can be split into the ones relevant to a pure CFD

simulation and those relevant to the TSM approach itself. A solver was then implemented in a Python

program with an interface with the CFD code elsA. The Python program is in charge of performing the

time integration scheme, in computing the time source terms by handling the coupling between the

different instants and in assembling the TSM residual (RTSM in equation ( 5.1.7 )). The CFD code should

be able to provide the residual vector from flow variables at a given instant, the jacobian matrix or the

matrix-vector product for each instant and the local time step for each time instance. The elsA code

was then modified to make these later operators available from an external Python script. One of the

main advantage of such a modular implementation is the capability to investigate quickly and rather

easily different resolution strategies. Furthermore both time and space parallelization was implemented

taking benefit from the space parallelization of the CFD code. Indeed, because of the large number

of degrees of freedom in the space-time problem (the number of time instances M times the number

of degrees of freedom of the space problem), a particular parallel implementation is often needed.

In order to keep a fixed number of unknowns per process, the classical space discretization managed

by the CFD code is augmented with a time parallelization as illustrated in figure 67. The distribution

of the spatial unknowns over K processes is duplicated by the number of instants. The vector of the

unknowns of the whole space-time problem W is then distributed over a total of M ×K processes

indexed by the couple (n, k) where n ∈ [0,M − 1] and k ∈ [0,K − 1]. Parallel communications

may occur either in the time direction via one of the K time communicators (yellow) or in the space

direction via one of the M space communicators (blue).

Two resolution strategies of the TSM problem were implemented. The first one consists in solving the

equation 5.1.7 using an implicit iterative Block Jacobi as described by Sicot et-al [71]. The solution

increment is computed using an iterative way from(
|V |
∆τn

+ Jn

)
∆Wq

n = −Rq
n − |V |Dt(W

q
n)− |V |Dt(∆Wq−1

n ) (5.1.10)
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Figure 67: Distribution of the space-time vector W over M × K processes where Wm
k refers to the

unknowns belonging to spatial domain k and the instant m. Parallel communications occurs only within

one of the K temporal communicator (yellow) or one of the M space communicators (blue).

matching a total jacobian matrix

[A] =


|V0|
∆τ0

+ J0 0 . . . 0

0 |V1|
∆τ1

+ J1 . . . 0
...

...
. . .

...

0 0 . . . |VM−1|
∆τM−1

+ JM−1

 (5.1.11)

According to this approach, the solution increment of one time instance can be computed

independently of the other instants, the coupling between the instants being accounted for only in the

right hand side term. Nevertheless, the CFL must remain low, especially for a high number of instants, to

converge towards a solution. The second implemented approach consists in handling straightforwardly

the whole space-time vector W and in solving equation 5.1.8 using a preconditioned GMRES

algorithm. It can be less dependent on the CFL number than the Block Jacobi resolution, but its

robustness depends on the preconditioning technique. Moreover, a parallel implementation of the

GMRES algorithm is needed for a large number of instants or of mesh cells.

NACA64 2D test case
The selected test case to validate the implementation of the TSM solver is a symmetric NACA64A010

airfoil under a prescribed harmonic pitch motion. The motion is sinusoidal with an angle of attack

defined by the function

α(t) = α0 + α̂ sin(ωt) (5.1.12)

where α0 is the mean angle of attack and α̂ is the amplitude of the pitch motion.
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Figure 68: Structured 4-block 2D C-mesh of the NACA64A010 airfoil.

Experimental results are reported by the AGARD group in [10]. We have selected the dynamic

index 55 case corresponding to a transonic Mach number of 0.796 and an excitation frequency of

34.4Hz. The fluid domain is discretized with a structured 2D C-mesh of 257x33 cells. The inviscid Euler

equations are considered for the fluid model. An upwind second order Roe spatial discretization

scheme associated to a MUSCL reconstruction and a Van Albada limiter for the convective fluxes is

used. The flow conditions are reported in Table 4.

Table 4: Flow conditions for dynamic index 55.

M 0.796 Mach number

p∞ 133912Pa free stream pressure

pt 203321Pa total pressure

q 59395Pa dynamic pressure

f 34.4Hz pitching frequency

α0 −0.21◦ mean incidence

α̂ 1.02◦ pitching amplitude

Numerical experiments
The phase portrait of the aerodynamic coefficients as functions of the angle of attack considering

the whole time history of the reference unsteady analysis are plotted in Figure 69. The plain bold curves

correspond to the established periodic response in the 8th time period, after a transient of 7 periods. The

colored markers correspond to the instantaneous values obtained for a varying number of harmonics.
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Figure 69: Aerodynamic coefficients versus angle of attack plots. The instantaneous values for a varying

number of harmonics are superimposed to the reference unsteady time history.

Figure 70: Accuracy of the time-spectral reconstruction for lift and drag coefficients for a spectral

approximation from 1 to 6 harmonics.

The previous simulations were performed considering rigid rotations of the whole mesh, meaning

that the airfoil motion was taken into account using an entrainment speed applied to the whole mesh.

In order to be able to handle structural deformations, the ALE formulation was implemented in the

modular TSM solver to take into account that the fluid mesh is not the same at each instant. Such

formulation implies that the residuals vectors Rn and the jacobian matrix Jn provided by the CFD

code must account for the additional flux due to the mesh deformation speed and for the specific

boundary conditions for a deforming mesh. The time operator Dt should also be applied to the quantity

VW and not only to the conservative variables vector W. A first step of the validation of the ALE

formulation implementation into the modular solver consisted in checking that the grid deformation

speed is correctly taken into account by the CFD code by comparing two steady simulations. One

simulation is a classic one just applying a nonzero angle of attack to the far-field boundary conditions.

The second consisted in applying no angle of attack but an equivalent constant vertical grid velocity

to the whole mesh. It has been checked that both simulations provided similar results. This validation

step was also performed in the case of the 3D DLR-F25 wing using a multi-block structured mesh. The

second validation step consisted in carrying out TSM simulations, applying the same oscillation motion (

5.1.12 ) to the airfoil and keeping the far boundaries fixed. The mesh is then computed for each instant

using a grid deformation tool (figure 71).

65



NEXTAIR D1.3

GA No 101056732 DENs to Speed-up MDOs

A first set of simulations was performed for a time discretization based on 1 harmonic, i.e. for a time

sampling of 3 instants. The flow variable distributions at the three instants are in a good agreement

as can be seen in figure 72 showing the iso-contours of the density for both the rigid and deformable

meshes. The discrepancies between the iso-lines can be explained by the different positions of the

airfoil (initial position for the rigid mesh since the rotation is taken into account by the far-field boundary

conditions, and rotated position for the deformable mesh). Figure 73 shows the time evolution over

one period of the global coefficients computed for the rigid and deformable meshes, and using

both unsteady and TSM simulations. These coefficients are computed in the wind axes. As expected

according to the simulations presented above, the TSM with 3 instants is accurate enough to catch

the lift evolution. A good agreement can indeed be observed between the four simulations. But the

TSM with 3 instants is not accurate enough to capture the drag evolution. If a rather good agreement

between the unsteady drag evolutions computed with the rigid and deformable meshes can be

observed, discrepancies between the 2 TSM simulations can be noticed. Further investigations are on

going to try to explain them.

Figure 71: Deformed meshes at the instants 2 (left) and 3 (right) of a TSM simulations with 3 instants

Figure 72: density contours at the 2nd instant computed for the rigid and deformable meshes
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Figure 73: time evolution over one period of the lift (left) and drag (right) coefficients resulting from unsteady

and TSM simulations

Numerical simulations were also performed for the TSM problem with 4 harmonics and 9 instants for

its capability to predict accurately the drag evolution.

Some investigations about the numerical algorithms were carried out. The TSM problem with 3

instants (1 harmonics) was solved using a Newton like non-linear algorithm with an additional pseudo

time term (CFL). The resulting linear system to compute the solution increment at each non-linear

iteration was solved using a block Jacobi algorithm or a preconditioned GMRES algorithm. The semi

implicit block-Jacobi technique, as presented by Sicot et-al [71], allows the resolution instant by instant

with an update of the time terms at each Jacobi sub-iteration. The CFL number had to remain constant

at a rather low value (no greater than 10 for this case) for the whole simulation in order the latter

to converge. The linear system which arises at each Jacobi sub-iteration was partially solved using

either a relaxation LUSGS method or a preconditioned GMRES. On the other hand, the linear system

at each non-linear iteration can be solved using a preconditioned GMRES. This linear system takes into

account the degrees of freedom of all the instants. The GMRES algorithm must then be applied to a

much larger system than that solved using the Jacobi algorithm. But the CFL number can vary and

be adapted to the residual in order that the pseudo time terms vanish at the end of the resolution

process. The convergences towards the solution are very similar for both rigid and deformable meshes,

whatever the used resolution algorithm. The TSM problem with 3 instants is numerically easy to solve.

The convergence of the residual is similar for all the resolution algorithms as long as the CFL number

remains constant. This parameter has the greatest influence on the convergence speed. Its evolution

proportional to a power of the inverse of the residual norm allows a rapid increase of itself and then

reduces drastically the number of needed non-linear iterations as can be seen in figure 74 left.

TSM simulations were also performed with a deformable mesh (ALE formulation) and a time

sampling of 9 instants (4 harmonics). Only the Block Jacobi technique associated with a LU-SGS

algorithm was used. Similar convergences can be observed with both rigid and deformable meshes

for CFL numbers less than 3 (figure 74 right). The time evolutions of the lift and drag coefficients over

one period for both rigid and deformable meshes are in a good agreement one with the other and

with the unsteady simulations (figures 75).
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Figure 74: Residual evolutions for the TSM simulations with 3 (left) and 9 instants (right).

Figure 75: time evolution over one period of the lift (left) and drag (right) coefficients resulting from unsteady

and tsm simulations.

5.1.2 TSM adjoint solver

Theoretical background
Let p be a set of np shape design parameters, X(p) the corresponding parameterized fluid mesh

and J (p) = J(Wn(p),X(p)) any scalar aerodynamic function of interest like drag, lift or moment

coefficient. Note that the flow variables at the 2N +1 instants in the period appear in function J . The

flow field Wn and the volume mesh X are linked by the discrete residual equations

RTSM (Wn,X) = Rn(Wn,X) + |V |Dt(Wn) = 0 (5.1.13)

In this section we only discuss applications of the ALE formulation for a rigid entrainment velocity

field. We then consider a constant mesh geometry and the associated volume matrix |V | is therefore

taken constant in the following. Anyway, the extension to a general ALE formulation is straightforward.

Direct differentiation of ( 5.1.13 ) with respect to a design parameter p gives

dRTSM

dp
=

M−1∑
j=0

∂RTSM

∂Wj

dWj

dp
+

∂RTSM

∂X

dX

dp
(5.1.14)

68



NEXTAIR D1.3

GA No 101056732 DENs to Speed-up MDOs

A strong requirement here is that the total variation of the residual must vanish for any design

parameter change, i.e. dRTSM/dp = 0. Inserting the definition of RTSM in ( 5.1.14 ) leads to the

following tangent linear system:

Jn
dWn

dp
+ |V |

M−1∑
j=0

dnj
dWj

dp
= −∂Rn

∂X

dX

dp
− δp|V |

M−1∑
j=0

dnjWj (5.1.15)

where δp|V | = ∂|V|
∂X

dX
dp represents the matrix of analytic sensitivities of cell volumes to a change in p.

On the left-hand side we recognize the full Jacobian matrix [A] in ( 5.1.9 ).

We introduce the general form of an objective function for a periodic response as the weighted

sum J =
∑M−1

n=0 cnJn(Wn,X). The total derivative of the objective function is then written as

dJ
dp

=
∑
n

cn
∂Jn
∂X

dX

dp
+
∑
n

cn
∂Jn
∂Wn

dWn

dp
(5.1.16)

We also have the following equality that holds ∀λn ∈ Rna

cnλ
T
n

dRTSM

dp
= 0, 0 ≤ n < M (5.1.17)

and combining with ( 5.1.14 ) and ( 5.1.16 ) leads to

dJ
dp

=
∑
n

cn
∂Jn
∂X

dX

dp
+
∑
n

cnλ
T
n

∂RTSM

∂X

dX

dp

+
∑
n

cn

(
∂Jn
∂Wn

+ λT
n Jn

)
dWn

dp
+
∑
n

cnλ
T
n

|V |∑
j

dnj
dWj

dp

 (5.1.18)

The adjoint system is obtained by canceling the factor of dWn/dp which defines the adjoint

vectors λn as the solutions of the following coupled linear systems

JT
nλn + |V |

M−1∑
j=0

djnλj = −
(

∂Jn
∂Wn

)T

, 0 ≤ n < M (5.1.19)

The transpose of the system matrix ( 5.1.9 ) of the TSM solver naturally appears in the adjoint linear

system. Using the skew-symmetric property of the time-spectral derivative matrix (dnj)0≤n,j<M we

have djn = −dnj . Finally, the total derivative of the objective function turns out to be

dJ
dp

=
∑
n

cn

(
∂Jn
∂X

+ λT
n

∂Rn

∂X

)
dX

dp
+
∑
n

cnλ
T
n (δp|V |Dt(Wn)) (5.1.20)

Numerical experiments
We apply the TSM adjoint solver to the same NACA64 2D test case (4-block structured C-type

mesh) presented in the section devoted to the TSM solver. As already mentioned, the Block-Jacobi

iterative solution strategy can no longer be applied because the adjoint system lacks of diagonal

dominance. As pointed out by Mundis and Mavriplis in [49], with an increasing number of harmonics

the full Jacobian matrix in 5.1.9 proceeds farther and farther from diagonal dominance. This results in

linear systems of increasing complexity in terms of size and numerical stiffness. This undesirable property

becomes problematic for relaxation-based iterative solvers whose convergence relies on diagonal

dominance. To circumvent the need for diagonal dominance, Krylov subspace methods (e.g. the

GMRES algorithm [60]) were considered in more recent works [77, 50, 74, 48, 48, 34]. In practice, we

decided to switch to more efficient Krylov solvers embedded in the hpddm package [27] of the linear
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algebra library PetSc [3]. The interested reader may refer to [25] for details about the nested Krylov

strategy applied to CFD adjoint systems. Whatever, the linear solution method used (i.e. stationary

methods or Krylov methods), a preconditioner is always needed to decrease the condition number

of the system and allow for better convergence. In the present work, we focus on the so-called

Block Jacobi preconditioner. However, several preconditioning strategies have been proposed in the

literature, among which the STI (Spatial-Temporal diagonal-block Inversion) preconditioner [48], the

approximate-factorization preconditioner [50], the block-circulant preconditioner [[47], Chap. 3], etc.

Figure 76: Convergence of various Krylov solvers applied to the TSM adjoint linear system, for a single

harmonic spectral approximation. Stationary preconditioned GCRO-DR and GMRES-DR perform similarly.

The same conclusion is drawn for nested Krylov solvers. For this simple problem, even a small outer Krylov

subspace of 20 vectors turns out to be very efficient.

Various advanced Krylov solvers with deflation and restarting like GMRES-DR (Generalized Minimal

Residual Method with Deflated Restarting) and GCRO-DR (Generalized Conjugate Residual method

with inner Orthogonalization and Deflated Restarted) combined with stationary or iterative nonlinear

preconditioners have been tested. The associated convergence histories of the relative residual

norm are plotted in Figure 76. GMRES-DR and GCRO-DR perform equivalently, while their flexible

counterparts exhibit a speedup factor of about 5. The numerical parameters of the Krylov solvers are

reported in the figure legend.

The efficiency of the Krylov solver is then evaluated for an increasing number of harmonics

in the spectral approximation of the unsteady solution. In Figure 77 the associated residual norm

convergence history of the GCRO-DR and FGCRO-DR adjoint solvers is plotted. Clearly the Block-

Jacobi preconditioner, even if associated to a nested Krylov solver, cannot achieve wave number

independence in terms of iterations. As mentioned previously, designing such a preconditioner is still

an active area of research. Reusing existing building blocks was our main goal in setting up this TSM

modular adjoint solver prototype and improvements will be considered in the near future regarding the

preconditioning strategy.
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Figure 77: Convergence of the standard (left) and nested (right) GCRO-DR Krylov solvers applied to the

TSM adjoint linear system for an increasing number of harmonics. The maximum size of the outer Krylov

subspace is 100, the size of the recycled subspace is 30 and for the flexible solver the inner Krylov subspace

is limited to 10 vectors.

As an example, Figure 78 presents the primal and adjoint density flow solutions at the three

discretization instants of the single-harmonic approximation of the unsteady motion of our NACA64 test

case.
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(a) Density primal flow solution, instant=0 (b) Density adjoint flow solution, instant=0

(c) Density primal flow solution, instant=1 (d) Density adjoint flow solution, instant=1

(e) Density primal flow solution, instant=2 (f) Density adjoint flow solution, instant=2

Figure 78: Primal and adjoint density flow solutions for a 1-harmonic spectral approximation of the forced

harmonic pitching motion of the NACA64 airfoil.
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Numerical validation
The basic building blocks of the TSM adjoint solver have been validated numerically by carrying

out a systematic comparison with finite difference approximations. In addition, the duality checks

between the full primal TSM system matrix and its adjoint counterpart show a relative precision of 8

significant digits. To further assess the accuracy of the assembled TSM adjoint total derivatives, we have

implemented a simple parameterization of the NACA64 airfoil shape. Our objective is to compare

with gradients of the aerodynamic pressure drag coefficient CDp obtained by finite differences. The

parameterization is performed using the PADGE CAD modeler kindly provided by Airbus in the context

of NEXTAIR. The PADGE framework also provides the wall grid sensitivities with respect to the design

variables. We can then easily apply a volume mesh deformation operator to this quantity to obtain

the volume mesh derivative dX/dp required for the assembly of the total gradient of the objective

function (see equation 5.1.20 ).

Figure 79: Simple shape parameterization of the NACA64 airfoil for validation of adjoint derivatives. Three

design variables control the thickness-to-chord ratio at sections located at 25, 50 and 75% of the chord.

We first compute the TSM solution using a single harmonic for the spectral approximation (i.e. 3

instants in the temporal period). To get the best accuracy, we ask for a relative decrease of 10 orders

of magnitude for the residuals of the TSM primal and adjoint solvers. In figure 80 the time-average

derivatives of the pressure drag coefficient obtained by the finite differences and the adjoint strategies

are compared. Reported values are scaled by the adjoint ones. The latter then appear as horizontal

lines at a constant unit value. Typically, the finite difference approximations show good convergence

for increments lower than 1. × 10−3. In this range, a very good agreement is observed with less that

1% of maximum discrepancy.
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(a) t/c at 25% (b) t/c at 50%

(c) t/c at 75%

Figure 80: Finite difference validation for the 3 instant time-average adjoint derivative of CDp. The three

parameters control the relative thickness of the airfoil at 25, 50 and 75% of chord respectively. Blue plain

curves correspond to FD derivatives scaled by adjoint ones.

5.1.3 Conclusion

In this section a modular implementation of scalable, parallel in time and space, TSM primal and adjoint

solvers were presented. The implementation is versatile as this framework can be easily connected to

several CFD solvers like elsA or CODA. We also exploited the modularity of this implementation, thereby

simplifying the use of an external linear algebra package such as PetSc. The prototype of adjoint

solver is a new capability that was not available yet at ONERA. As such, we put great attention to the

numerical validation of this new solver by performing systematic comparison with finite differences on

a simplified airfoil shape parameterization.

5.2 Data compression techniques by NTUA

NTUA developed and used compression techniques (applied to the primal unsteady solver results) to

relax the storage requirements of the unsteady adjoint method in larger scale industrial applications,

such as those involved in NEXTAIR. Given that the unsteady adjoint equations are integrated backward

in time, the adjoint solver should have access to the instantaneous flow fields at each and every

time-step. Here we refer to the flow field time-series which are previously computed by advancing the
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primal equations forward in time on the same geometry. Mainstream treatments of this issue are:

(a) Full storage of the primal solution time-series, provided that the available hardware can support

this; storage is maximized, but with zero recomputation penalty. For industrial applications, this is

usually not feasible.

(b) No-storage of the primal solution time-series; at each time-step of the adjoint solver, the

instantaneous flow solution must be recomputed, starting from the initial state. However,

depending on the problem size, the optimization turn-around time may become prohibitively

high. This is discussed here just for the sake of completeness.

(c) Use of the Binomial Check-Pointing [22] technique, which is the state-of-the-art method in

industrial applications. Check-pointing strategically stores the flow solution at a number of

optimally placed and regularly updated time-instants (check-points) and recomputes the

rest. While this alleviates huge storage requirements, it introduces an overhead due to flow

recomputations. Depending on the size of the problem and the check-pointing settings, this

overhead might become non-negligible, especially in large-scale applications. In the following

discussion, the (binomial) check-pointing technique is abbreviated to BChP(Sp), where Sp

stands for the user-selected number of check-points.

In order to avoid flow recomputations, a viable alternative is to store the primal solution (or, at

least, part of it, as in check-pointing) in compressed form [30, 78]. Lossless or lossy compression

algorithms can be used for this purpose. As the gain from lossless compression is expected to be

limited [31], lossless and lossy compression techniques are herein synergistically used. In this regard, the

iPGDZ+ (lossy) compression kernel, developed by the NTUA group in [43, 44, 45], is used herein by

adapting this to the unsteady adjoint code of PUMA, as this was originally developed in OpenFOAM,

for incompressible flows. iPGDZ+ is demonstrated herein in compressible flows for the first time. iPGDZ+

comprises three compression phases, successively based on: (a) the incremental Proper Generalized

Decomposition (iPGD) [43], (b) ZFP [35] and (c) Zlib [18], see section 5.2.1. It should be noted that

in adjoint-based optimization, it is important to ensure that errors in the flow fields, due to a lossy

compression/decompression, will affect the accuracy of neither the adjoint solution nor the computed

Sensitivity Derivatives (SDs). This is, among other, included in this report.

In this report, compression of the flow solution time-series is carried out using the Compressed Full

Storage (CFS) technique [43, 44], with iPGDZ+ serving as the main building block. CFS leverages

the iPGDZ+ algorithm to store the entire time-history of the flow solution in memory or on a hard-disk.

Sections 5.2.1 and 5.2.2 briefly outline the iPGDZ+ algorithm and the CFS technique, which is applicable

to both periodic and non-periodic unsteady flows.

Even greater storage savings can be achieved by combining the iPGDZ+ algorithm with check-

pointing, which is referred to as the Compressed Coarse-grained Check-Pointing (3CP) technique.

Developed recently by NTUA [45], 3CP can decrease storage requirements by nearly an order of

magnitude compared to CFS, albeit at the expense of a few recomputations. One should keep

in mind that the 3CP technique was developed to handle large-scale applications in which data

size exceeds the available memory capacity, even after compression by CFS. Given that the entire

time-history of the flow solution compressed by the CFS can be stored on the hard-disk in the cases

under examination, 3CP is not explored in this report. Generally, when data is stored on the hard-disk,

the primary objective of compression techniques is to reduce the cost of data transmission to and from

the hard-disk. In this respect, 3CP is not expected to offer any advantage over CFS.

5.2.1 The iPGDZ+ Algorithm

The Proper Generalized Decomposition (PGD) algorithm [6] was initially proposed to compress struc-

tured data (such as, CFD solutions on structured grids). For instance, on a structured grid, the curvilinear
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coordinates might give three families of spatial modes. Thus, eq. ( 5.2.1 ) would be formed by the

product of four modes (one temporal and three spatial. Since we are dealing with unstructured grids,

we decided to have a single spatial mode Xµ, which stands for all nodes (recall that a vertex-centered

finite volume is used in PUMA), with nodes numbered with their ID (in the unstructured grid description).

Thus, each field f(i, k) is approximated by the sum of M products of spatial X(i) and temporal T (k)
modes, where i is the (integer) vertex-ID and k the time-step counter, reading

f (i, k)≃
M∑
µ=1

Xµ(i)Tµ(k) (5.2.1)

The number M of modes is user defined. Standard PGD requires the whole time-history of the flow to

be available prior to its compression. It is though obvious that, if this storage capacity was available,

there is no reason for the fields to be compressed. This is why the incremental variant of PGD (iPGD)

was devised [43]; this updates the computed modes each time a new instantaneous field is computed,

i.e. once the flow solution at the next time-step becomes available. In specific, once the solution field

at the new (L+1) time-step becomes available, a new element Tm
L+1, m∈ [1,M ], is computed and

modes Tm
k , k∈ [1, L] and Xm

i , i∈ [1, I], where I is the total number of grid cells, are simultaneously

updated. The iterative computation of (Xm, Tm), m∈ [1,M ] targets the minimization of the error

function [43]

Em=
1

2

I∑
i=1

 m∑
µ=1

Xµ
i T

µ
L+1 − fi,L+1

2

︸ ︷︷ ︸
Error corresponding to the new

time-instant (L+1)

+
w

2

I∑
i=1

L∑
k=1

 m∑
µ=1

Xµ
i T

µ
k − f iPGD

i,k

2

︸ ︷︷ ︸
Error corresponding to all previous

time instants (1,...,L)

(5.2.2)

The f iPGD
i,k fields are reconstructed on the fly as

∑M
µ=1 X̃

µ
i T̃

µ
k , i∈ [1, I] , k∈ [1, L], using the previous

approximation to fi,k, based on X̃ and T̃ . w a user-defined weight factor; in all set-ups of this

report, w = 1. The unknown modes
(
Xm

i , Tm
k and Tm

L+1

)
are computed by iteratively solving the

∂Em/∂Xm
i =∂Em/∂Tm

k =∂Em/∂Tm
L+1=0 equations, in a segregated manner [43].

After compressing a time-series with iPGD, the spatial and temporal modes are further compressed

by successively using ZFP [35] and Zlib [18]. Practically, the modes are stored in compressed form.

First, each mode of size l is transformed into a 2D array of size 4⌈l/4⌉ (⌈ ⌉ is the ceiling function) and,

then, lossly compressed using the fixed-precision mode of ZFP with a user-defined number (P ) of bits

(same for all modes). The resulting data stream is losslessly compressed using the fastest level of the

Zlib library, prioritizing compression/decompression speed over data reduction. The main steps of the

iPGDZ+ algorithm are sketched in fig. 81.

Compute flow 
solution at 
𝑳 + 𝟏  

Update 𝑿, 𝑻 
modes 

𝑳 = 𝟎 

Iterative
Computation

 

iPGD 

Compress 𝑿, 𝑻 
with ZFP 

Compress ZFP 
streams with 

Zlib 
Continue? 

Yes 
𝑳 = 𝑳 + 𝟏 

No 

(CFD solver) 

iPGDZ+ 

Figure 81: Main steps of the iPGDZ+ compression algorithm.

The ZFP and Zlib algorithms are briefly presented in this paragraph. ZFP [35] may lossly compress

integer and floating-point data stored in d-dimensional arrays, with d∈ [1, 4]. These are partitioned into
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blocks of 4d values each and compressed. The ZFP follows the typical structure of lossy compression

algorithms, including decorrelation, quantization, and encoding stages. On the other hand, Zlib [18]

is a general purpose lossless compression library that implements the Deflate algorithm [14]. The latter

compresses a stream consisting of a series of blocks of data using a combination of the LZ77 algorithm

and Huffman encoding [61] on each block. Zlib handles all data types as a continuous stream of bytes.

Repeated sequences of bytes within a stream are replaced with references to a single copy of that

data existing earlier in the uncompressed stream.

It is important to note that none of the constituents of the iPGDZ+ algorithm requires parallel

communications, as they only work with the data available on each MPI rank. Hence, no scalability

issues may arise by increasing the MPI ranks.

5.2.2 The CFS Technique

In the CFS technique by NTUA, data are compressed by the previously described iPGDZ+ algorithm

and the whole time-history of the flow solution is stored in memory or in hard-disk. For the iPGDZ+

to retain its compression accuracy as the total number of time-steps increases, a higher number of

modes (M ) becomes necessary, which increases the compression/decompression cost per time-step.

To address this challenge, as proposed in [43], an additional action is optionally taken. The time-horizon

is partitioned into consecutive, non-overlapping time-windows, with a user-defined number K of

time-steps each (likely excluding the last one), as depicted in fig. 82. Each time-window will have a

different set of modes (of the same number M , though), as it is compressed independently from the

rest.

window 0 

𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 

window 1 window 2 window 3 window 4 window 5 window 6 window 7 window 8 window 9 

Unsteady Flow Solver 

𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 

Figure 82: Implementation of iPGDZ+ within CFS. In this quite simple explanatory example, the time-horizon

with 40 time-steps in total is partitioned into 10 time-windows.

In section 5.2.3, all tested CFS variants use a precision of P = 16 bits for ZFP. Thus, CFS will be

denoted as CFS(M ,K) to specify the number M of modes and the number K of time-steps per

time-window (if the time-horizon splits into time-windows).

5.2.3 Applications

The first application to demonstrate the capabilities of the CFS compression algorithm is the prediction

of the flow around a pitching airfoil as well as the computation of the gradient of aerodynamic

objective functions using continuous adjoint. The selected airfoil profile is that of NACA64010 with

a forced pitching motion around its chord quarter (c/4) with a rotation angle determined by

θ = Am + A0sin
(
2π
T t

)
where Am = 0.0o, A0 = −2.0o and T = 0.2sec. The farfield conditions of

the case are M∞ = 0.82, angle of attack a = 0.00 and Reynolds number based on the airfoil chord

Re = 4.1·106. The computational mesh around the airfoil can be seen in figure 83. It consists of 86K
triangular and 16K quadrilateral elements, with 59K nodes in total. The latter are placed next to the

airfoil to accurately simulate the developed boundary layer.

The NTUA in-house GPU-accelerated PUMA flow analysis and adjoint code was used to compute

the unsteady flow field during three periods of airfoil pitching. The Spalart--Allmaras turbulence model

was employed here, while each period (T ) was split into 50 time steps. The computed flow fields were
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Figure 83: Computational mesh around the NACA64A010 airfoil and the control grid used.

compressed based on the CFS algorithm according to two different settings. In the first, 3 modes were

used to compress the flow fields, with 10 successive time instants forming a time--window, abbreviated

to CFS(3,10). The second consists of time-windows with larger size (50) which thus employ a higher

number of modes (15), CFS(15,50). In practice, both sets use 45 modes in total, with the same disk

space requirements for data storage. Figures 84, 85 show the comparison of the time histories of drag

and lift coefficient computed either directly from PUMA or by first compressing and then decompressing

the flow fields using the CFS(3,10) and CFS(15,50). It can be seen that, the time histories computed

from the reconstructed fields are in very good agreement with those computed directly by PUMA.
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Figure 84: Comparison of the time histories of the instantaneous drag coefficient computed by PUMA, and

the reconstructed flow fields using CFS(3,10) (left) and CFS(15,50) (right).

Figure 86 shows the computed Mach number fields, either by PUMA or by post--processing the

reconstructed flows fields, at different time instants. Some discrepancies can be seen close to the

shock wave (for instance in the first and last row of figure 86 over the suction side, especially in

case of CFS(3,10)). Though these discrepancies were expected, it is very important that the shock

wave intensity and its interaction with the boundary layer are well captured by both CFS(3,10) and

CFS(15,50). It is important to comment on the reduction of the disk space requirements achieved by

using data compression. As written before, both CFS(3,10) and CFS(15,50) have the same disk space

requirements, which in this case, are almost the 5% of those needed to store the computed flow fields

at all (150) time instants. So, there is a reduction by 95% in the disk space footprint (from 954MB to

49MB).
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Figure 85: Comparison of the time histories of the instantaneous lift coefficient computed by PUMA, and

the reconstructed flow fields using CFS(3,10) (left) and CFS(15,50) (right).

In order to assess the benefits from data compression in unsteady adjoint, the adjoint--based drag

and lift coefficient sensitivities computed from the reconstructed flow fields, were compared with those

computed by the flow solver. For the needs of this study, the airfoil shape was parameterized using the

8x3 control grid shown in figure 83, where, the blue control points were fixed while the red ones could

move in the y-direction. Figures 87, 88 show the comparison between the adjoint--based drag and lift

coefficient sensitivities computed by the above methods. It can be seen that both CFS settings lead

to highly accurate sensitivities, with those based on CFS(15,50) being more accurate. Note that, in this

case, all flow field instants have been compressed and stored to the disk, so no flow re-computation is

needed by the adjoint solver.

The second application deals with the unsteady flow around a next generation HARW (High Aspect

Ratio Wing) transport aircraft, based on the DLR-F25 model, provided by DLR. This aircraft model is

representative of a short medium range transport aircraft featuring a wing aspect ratio of more than 15.

For the studies carried out here, the wing-body-HTP (Horizontal Tail Plane) configuration is considered.

The farfield Mach number is M∞ = 0.78, while the Reynolds number based on a mean aerodynamic

chord of 3.535m is Re = 2.0887·107. The angle of attack oscillates sinusoidally around a = 1.5o with

an amplitude of am = 0.5o and period T = 1.0s, as a = a0+amsin (2πt/T ). The computational

mesh used was provided by DLR and consists of ∼ 4.0M nodes, with ∼ 2.3M tetrahedra, ∼ 80K
pyramids, ∼ 12K prisms and ∼ 3.5M hexahedra. As in the first application, the flow analysis and

adjoint solver of PUMA was used.

Three compression settings, with low to high compression rates, are evaluated, namely CFS(5,10),

CFS(3,10) and CFS(3,25). Figures 89(left), 90(left) present the lift and drag coefficient time histories

computed using PUMA for three simulation periods. After reconstructing the flow fields using CFS(5,10),

CFS(3,10) and CFS(3,25), the resulting lift and drag coefficient time histories were compared with those

computed by PUMA. The corresponding absolute errors are presented in figures 89(right) and 90(right).

As expected, the more modes used for compression, the more accurate the reconstructed lift and

drag coefficient time histories. The absolute error of the reconstructed drag and lift coefficients based

on CFS(5,10) is less than 0.1%. It is impressive, though, that the reconstructed drag and lift coefficients

based on CFS(3,25) are highly accurate too. For instance, concerning drag coefficient, the error of

the reconstructed results does not exceed 1.0% or 3 drag counts.

Figure 91 presents a series of instantaneous pressure coefficient fields computed on the aircraft

wing suction side using PUMA (top row) or reconstructed using CFS(3,25) (bottom row). Differences

between the two fields can barely be seen.
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Figure 86: Instantaneous Mach number fields around the NACA64A010 airfoil computed by PUMA (left

column) or the reconstructed flow using CFS(3,10) (middle) and CFS(15,50) (right), at four different time

instants. The first (top) row corresponds to θ = 0.0o (nose moving upwards), the second to θ = −2.0o, the

third to θ = 0.0o (nose moving downwards) and the fourth (bottom) to θ = 2.0o.

In order to evaluate the impact of data compression on the unsteady adjoint solver performance,

the aircraft’s wing was parameterized and, then, the unsteady adjoint solver of PUMA was launched

four times using either the flow fields computed by PUMA or the reconstructed ones (three settings).

The computed drag coefficient sensitivities were compared. To parameterize the wing and get a

reasonably small number of design variables for which the sensitivity derivatives are computed, the

4×7×3 control grid of figure 92 was used, with the two rows of control points close to the wing--fuselage

intersection remaining fixed and the others controlling the twist of the 5 (blue) wing cross sections.

Figure 93(left) shows the computed time--averaged drag coefficient sensitivities w.r.t. the twist
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Figure 87: Comparison of the adjoint--based drag coefficient sensitivities computed by PUMA (REF) or using

the reconstructed flow fields with the three CFS settings.
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Figure 88: Comparison of the adjoint--based lift coefficient sensitivities computed by PUMA (REF) or using

the reconstructed flow fields with the three CFS settings.

angles of the 5 cross sections as computed based on the flow fields from PUMA. The error of the

corresponding sensitivities based on the reconstructed flow fields is shown in figure 93(right). Using the

reconstructed flow fields, there is no significant loss in the accuracy of sensitivities, with an error which

is less than 0.05%, 0.10% or 0.50% using CFS(5,10), CFS(3,10) or CFS(3,25), respectively. At the same

time, the disk space requirements are reduced from 32GB (if all flow fields computed by PUMA had

to be stored) to 2.7GB in case of CFS(5,10), 1.6GB in case of CFS(3,10), or only 638MB in case of

CFS(3,25). Consequently, the last case results in ∼98% reduction in the hard-disk footprint.
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Figure 89: Instantaneous lift coefficient time history computed using PUMA (left), and the absolute error of

the reconstructed lift coefficient time histories based on CFS(5,10), CFS(3,10) and CFS(3,25).
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Figure 90: Instantaneous drag coefficient time history computed using PUMA (left), and the absolute error

of the reconstructed drag coefficient time histories based on CFS(5,10), CFS(3,10) and CFS(3,25).

Figure 91: Instantaneous pressure coefficient fields computed on the aircraft wing suction side using PUMA

(top) or reconstructed using CFS(3,25) (bottom) for different time instants, namely at
0
5T ,

1
5T ,

2
5T ,

3
5T and

4
5T from left to right.
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Figure 92: View of the control grid used to modify the twist of 5 wing sections.
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Figure 93: Adjoint--based, time--averaged drag coefficient sensitivities computed by PUMA (left). Absolute

error of the corresponding sensitivities computed from the reconstructed flow fields (right).
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5.3 IRT contribution

IRT Saint Exupery has developed an interface to ordinary differential equation solvers for GEMSEO. The

adjoint interface to these ODE solvers is under development, using the PetsC (www.petsc.org) TSadjoint

library. This will allow the derivatives of the ODE solution to be computed with respect to the design

variables. The work is still ongoing, all the interfaces have been developed, but the validation is not yet

working. We are facing IT problems, the Python interface to the PetsC library is very powerful in terms

of features, but difficult to debug and not well documented. The validation results will be presented in

the technical report of the first reporting period.
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